Refine Your Search

Topic

Author

Search Results

Technical Paper

A Modular, Peak Power Tracking Solar Array Regulator

1999-08-02
1999-01-2448
Two high voltage, Series Connected Boost Regulators (SCBR) were developed to demonstrate the benefits of the SCBR topology for low Earth orbit communication satellites. The resulting breadboards had a power density of 1,200 W/kg and a measured efficiency of 95-99%. Several peak power tracking methods and algorithms were implemented to demonstrate the ability of the SCBR to peak power track a solar array. The peak power tracker derived maximum power at all times and reduced the number of sunlight battery discharges necessary. The breadboards also demonstrated several modularity techniques, which will allow a common SCBR module to be used in several applications. The breadboards were tested in an end-to-end high voltage test facility using high fidelity solar array simulators, an actual NiH2 battery, and simulated constant power loads. Design details and test results are presented.
Technical Paper

A Reevaluation of Appendix C Ice Roughness Using Laser Scanning

2015-06-15
2015-01-2098
Many studies have been performed to quantify the formation and evolution of roughness on ice shapes created in Appendix C icing conditions, which exhibits supercooled liquid droplets ranging from 1-50 µm. For example Anderson and Shin (1997), Anderson et al. (1998), and Shin (1994) represent early studies of ice roughness during short-duration icing events measured in the Icing Research Tunnel at the NASA Glenn Research Center. In the historical literature, image analysis techniques were employed to characterize the roughness. Using multiple images of the roughness elements, these studies of roughness focused on extracting parametric representations of ice roughness elements. While the image analysis approach enabled many insights into icing physics, recent improvements in laser scanning approaches have revolutionized the process of ice accretion shape characterization.
Technical Paper

Additional Large-Drop Ice Accretion Test Results for a Large Scale Swept Wing Section from January 2022

2023-06-15
2023-01-1382
In-flight icing is an important consideration that affects aircraft design, performance, certification and safety. Newer regulations combined with increasing demand to reduce fuel burn, emissions and noise are driving a need for improvements in icing simulation capability. To that end, this paper presents the results of additional ice accretion testing conducted in the NASA Icing Research Tunnel in January 2022 with a large swept wing section typical of a modern commercial transport. The model was based upon a section of the Common Research Model wing at the 64% semispan station with a streamwise chord length of 136 in. The test conditions were developed with an icing scaling analysis to generate similar conditions for a small median volumetric diameter (MVD) = 25 μm cloud and a large MVD = 110 μm cloud. A series of tests were conducted over a range of total temperature from -23.8 °C to -1.4 °C with all other conditions held constant.
Technical Paper

Aerodynamic Effects of Simulated Ice Accretion on a Generic Transport Model

2011-06-13
2011-38-0065
An experimental research effort was begun to develop a database of airplane aerodynamic characteristics with simulated ice accretion over a large range of incidence and sideslip angles. Wind-tunnel testing was performed at the NASA Langley 12-ft Low-Speed Wind Tunnel using a 3.5% scale model of the NASA Langley Generic Transport Model. Aerodynamic data were acquired from a six-component force and moment balance in static-model sweeps from α = -5 to 85 deg. and β = -45 to 45 deg. at a Reynolds number of 0.24x10⁶ and Mach number of 0.06. The 3.5% scale GTM was tested in both the clean configuration and with full-span artificial ice shapes attached to the leading edges of the wing, horizontal and vertical tail. Aerodynamic results for the clean airplane configuration compared favorably with similar experiments carried out on a 5.5% scale GTM.
Technical Paper

An Aerodynamic Simulation Process for Iced Lifting Surfaces and Associated Issues

2003-06-16
2003-01-2135
This paper discusses technologies and software tools that are being implemented in a software toolkit currently under development at NASA Glenn Research Center. Its purpose is to help study the effects of icing on airfoil performance and assist with the aerodynamic simulation process which consists of characterization and modeling of ice geometry, application of block topology and grid generation, and flow simulation. Tools and technologies for each task have been carefully chosen based on their contribution to the overall process. For the geometry characterization and modeling, we have chosen an interactive rather than automatic process in order to handle numerous ice shapes. An Appendix presents features of a software toolkit developed to support the interactive process. Approaches taken for the generation of block topology and grids, and flow simulation, though not yet implemented in the software, are discussed with reasons for why particular methods are chosen.
Technical Paper

DC Bus Regulation with a Flywheel Energy Storage System

2002-10-29
2002-01-3229
This paper describes the DC bus regulation control algorithm for the NASA flywheel energy storage system during charge, charge reduction and discharge modes of operation. The algorithm was experimentally verified in [1] and this paper presents the necessary models for simulation. Detailed block diagrams of the controller algorithm are given. It is shown that the flywheel system and the controller can be modeled in three levels of detail depending on the type of analysis required. The three models are explained and then compared using simulation results.
Technical Paper

Demonstration of Initial GlennICE Relative Frame Capability: Axial-Flow Propeller

2023-06-15
2023-01-1457
Modifications have been implemented in the GlennICE software to accommodate a non-inertial reference frame. GlennICE accepts a flow solution from an external flow solver. It then introduces particles and tracks them through the flow field in a Lagrangian manner. Centrifugal and Coriolis terms were added to the GlennICE software to account for relative frame simulations. The objective of the present paper is twofold. First, to check that the new terms are implemented correctly and that the code still behaves as expected with respect to convergence. And second, to provide some initial insight into an upcoming propeller experiment in the NASA Icing Research Tunnel. The paper presents a description of the code modifications. In addition, results are presented for two operating conditions, and three particle sizes. Each case was simulated with four different grid densities to assess grid dependence.
Technical Paper

Design, Fabrication, and Testing of a 10 kW-hr H2-O2 PEM Fuel Cell Power System for High Altitude Balloon Applications

1999-08-02
1999-01-2588
NASA Glenn Research Center and the Wallops Flight Facility jointly conducted a PEM fuel cell power system development effort for high altitude balloon applications. This was the first phase of NASA efforts to offer higher balloon payload power levels with extended duration mission capabilities for atmospheric science missions. At present, lead-acid batteries typically supply about 100 watts of power to the balloon payload for approximately 8 hours duration. The H2-O2 PEM fuel cell demonstration system developed for this effort can supply at least 200 watts for 48 hours duration. The system was designed and fabricated, then tested in ambient ground environments as well as in a thermal vacuum chamber to simulate operation at 75 kft. altitude. Initially, this program was planned to culminate with a demonstration flight test but no flight has been scheduled, thus far.
Journal Article

Developing Abrasion Test Standards for Evaluating Lunar Construction Materials

2009-07-12
2009-01-2377
Operational issues encountered by Apollo astronauts relating to lunar dust were catalogued, including material abrasion that resulted in scratches and wear on spacesuit components, ultimately impacting visibility, joint mobility and pressure retention. Standard methods are being developed to measure abrasive wear on candidate construction materials to be used for spacesuits, spacecraft, and robotics. Calibration tests were conducted using a standard diamond stylus scratch tip on the common spacecraft structure aluminum, Al 6061-T6. Custom tips were fabricated from terrestrial counterparts of lunar minerals for scratching Al 6061-T6 and comparing to standard diamond scratches. Considerations are offered for how to apply standards when selecting materials and developing dust mitigation strategies for lunar architecture elements.
Technical Paper

Development of Icing Condition Remote Sensing Systems and their Implications for Future Flight Operations

2003-06-16
2003-01-2096
NASA and the FAA are funding the development of ground-based remote sensing systems specifically designed to detect and quantify the icing environment aloft. The goal of the NASA activity is to develop a relatively low cost stand-alone system that can provide practical icing information to the flight community. The goal of the FAA activity is to develop more advanced systems that can identify supercooled large drop (SLD) as well as general icing conditions and be integrated into the existing weather information infrastructure. Both activities utilize combinations of sensing technologies including radar, radiometry, and lidar, along with Internet-available external information such as numerical weather model output where it is found to be useful. In all cases the measured data of environment parameters will need to be converted into a measure of icing hazard before it will be of value to the flying community.
Technical Paper

Diffusion Limited Supercritical Water Oxidation (SCWO) in Microgravity Environments

2006-07-17
2006-01-2132
Tests designed to quantify the gravitational effects on thermal mixing and reactant injection in a Supercritical Water Oxidation (SCWO) reactor have recently been performed in the Zero Gravity Facility (ZGF) at NASA's Glenn Research Center. An artificial waste stream, comprising aqueous mixtures of methanol, was pressurized to approximately 250 atm and then heated to 450°C. After uniform temperatures in the reactor were verified, a controlled injection of air was initiated through a specially designed injector to simulate diffusion limited reactions typical in most continuous flow reactors. Results from a thermal mapping of the reaction zone in both 1-g and 0-g environments are compared. Additionally, results of a numerical model of the test configuration are presented to illustrate first order effects on reactant mixing and thermal transport in the absence of gravity.
Technical Paper

Ground-Based and Airborne Remote Sensing of Inflight Aircraft Icing Conditions

2000-04-11
2000-01-2112
NASA, the FAA, DoD, and NOAA have teamed with industry and academia to develop a capability to detect icing conditions ahead of aircraft using onboard or ground-based remote sensing systems. The goal of the program is to provide pilots with sufficient information to allow avoidance of icing. Information displayed to the pilot, as a measure of icing potential, will be useful in assessing the risk of entering the sensed conditions. This requires measurement and mapping of cloud microphysical parameters, especially cloud and precipitation liquid water content, droplet size and temperature, with range. Remote measurement of cloud microphysical conditions has been studied for years. However, this is the largest focused program devoted to remotely detect aircraft icing conditions. Primary funding sources are NASA Aerospace Operations Systems, the FAA Aviation Weather Research Program and William J.
Technical Paper

Impact Ice Adhesion at NASA Glenn: Current Experimental Methods and Supporting Measurements

2023-06-15
2023-01-1444
When examining the literature on the adhesion strength of impact ice, there have been a wide range of methodologies tried to measure the required stresses to induce interfacial delamination. Utilizing the Icing Research Tunnel at the NASA Glenn Research Center to generate the impact ice required for this work, several different mechanical tests have been and are being developed to determine the stresses along the interface between ice and coupon. This set of tests includes the technical mature modified lap joint test which has been used to conduct ice adhesion studies through a wide sweep of icing conditions. To conduct in situ ice adhesion measurements inside of the Icing Research Tunnel, several new experiments are currently being developed to make ice adhesion measurements during and immediately after ice accretion.
Technical Paper

Impact Ice Microstructure Segmentation Using Transfer Learned Model

2023-06-15
2023-01-1410
A process of using machine learning to segment impact ice microstructure is presented and analyzed. The microstructure of impact ice has been shown to correlate with the adhesion strength of ice. Machine vision techniques are explored as a method of decreasing analysis time. The segmentation was conducted with the goal of obtaining average grain size estimations. The model was trained on a set of micrographs of impact ice grown at NASA Glenn’s Icing Research Tunnel. The model leveraged a model pre-trained on a large set of micrographs of various materials as a starting point. Post-processing of the segmented images was done to connect broken boundaries. An automatic method of determining grain size following an ASTM standard was implemented. Segmentation results using different training sets as well as different encoder and decoder pairs are presented. Calculated sizes are compared to manual grain size measurement methods.
Technical Paper

In-flight Icing Hazard Verification with NASA's Icing Remote Sensing System for Development of a NEXRAD Icing Hazard Level Algorithm

2011-06-13
2011-38-0030
From November 2010 until May of 2011, NASA's Icing Remote Sensing System was positioned at Platteville, Colorado between the National Science Foundation's S-Pol radar and Colorado State University's CHILL radar (collectively known as FRONT, or ‘Front Range Observational Network Testbed’). This location was also underneath the flight-path of aircraft arriving and departing from Denver's International Airport, which allowed for comparison to pilot reports of in-flight icing. This work outlines how the NASA Icing Remote Sensing System's derived liquid water content and in-flight icing hazard profiles can be used to provide in-flight icing verification and validation during icing and non-icing scenarios with the purpose of comparing these times to profiles of polarized moment data from the two nearby research radars.
Technical Paper

Innovative Multi-Environment, Multimode Thermal Control System

2007-07-09
2007-01-3202
Innovative multi-environment multimode thermal management architecture has been described that is capable of meeting widely varying thermal control requirements of various exploration mission scenarios currently under consideration. The proposed system is capable of operating in a single-phase or two-phase mode rejecting heat to the colder environment, operating in a two-phase mode with heat pump for rejecting heat to a warm environment, as well as using evaporative phase-change cooling for the mission phases where the radiator is incapable of rejecting the required heat. A single fluid loop can be used internal and external to the spacecraft for the acquisition, transport and rejection of heat by the selection of a working fluid that meets NASA safety requirements. Such a system may not be optimal for each individual mode of operation but its ability to function in multiple modes may permit global optimization of the thermal control system.
Technical Paper

Light Weight Nickel-Alkaline Cells Using Fiber Electrodes

2004-11-02
2004-01-3167
Using a new fiber electrode technology, currently developed and produced by Bekaert Corporation (Bekaert), Electro Energy, Inc., (EEI) Mobile Energy Products Group (formerly, Eagle-Picher Technologies, LLC, Power Systems Department) in Colorado Springs, CO has demonstrated that it is feasible to manufacture flight weight nickel hydrogen cells having about twice the specific energy (80 vs. 40 watt-hr./kg) as state-of-the-art nickel hydrogen cells that are currently flown on geosynchronous communications satellites. Although lithium-ion battery technology has made large in-roads to replace the nickel alkaline technology (nickel-cadmium, nickel-metal hydride), the technology offered here competes with lithium-ion weight and offers alternatives not present in the lithium-ion chemistry such as: ability to undergo a continuous overcharge, reversal on discharge, and sustain rate capability sufficient to start automotive and aircraft engines at subzero temperatures.
Technical Paper

Low Temperature Performance Evaluation of Battery Management Technologies

1999-08-02
1999-01-2543
This paper presents the results of research efforts performed to evaluate the performance of rechargeable battery management technologies at low temperatures. Three battery chemistries are considered in this work. These are the Nickel-Cadmium (NiCd), Nickel-Metal Hydride (NiMH) and Lithium-ion (Li-ion). Battery management evaluation kits from two battery manufacturers were acquired and tested. These are the DS2434k, DS2435k and DS2437k from Dallas Semiconductor and the MAX712, MAX846A and MAX2003A from MAXIM Integrated Products. The kits were characterized in a chamber whose temperature was changed and regulated using liquid nitrogen. The temperature of the chamber was varied from 20°C to −180°C. At each temperature, the battery voltage, current, state of charge, temperature and other auxiliary variables as monitored by each chip were recorded. Also, the performance of each kit after a complete cooling and heating cycle is recorded.
Journal Article

Lunar RFC Reliability Testing for Assured Mission Success

2008-11-11
2008-01-2901
NASA's Constellation program has selected the closed cycle hydrogen oxygen Polymer Electrolyte Membrane (PEM) regenerative Fuel Cell (RFC) as its baseline solar energy storage system for the lunar outpost and manned rover vehicles. Since the outpost and manned rovers are "human-rated", these energy storage systems will have to be of proven reliability exceeding 99 percent over the length of the mission. Because of the low (TRL=5) development state of the closed cycle hydrogen oxygen PEM RFC at present, and because there is no equivalent technology base in the commercial sector from which to draw or infer reliability information from, NASA will have to spend significant resources developing this technology from TRL 5 to TRL 9, and will have to embark upon an ambitious reliability development program to make this technology ready for a manned mission. Because NASA would be the first user of this new technology, NASA will likely have to bear all the costs associated with its development.
Technical Paper

NDE Methodologies for Composite Flywheels Certification

2000-10-31
2000-01-3655
Manufacturing readiness of composite rotors and certification of flywheels depend in part on the maturity of nondestructive evaluation (NDE) technology for process optimization and quality assurance, respectively. Capabilities and limitations of x-ray-computed tomography and radiography, as well as advanced ultrasonics were established on NDE ring and rotor standards with EDM notches and drilled holes. Also, intentionally seeded delamination, tow break, and insert of bagging material were introduced in hydroburst-rings to study the NDE detection capabilities of such anomalies and their effect on the damage tolerance and safe life margins of subscale rings and rotors. Examples of possible occurring flaws or anomalies in composite rings as detected by NDE and validated by destructive metallography are shown. The general NDE approach to ensure quality of composite rotors and to help in the certification of flywheels is briefly outlined.
X