Refine Your Search

Topic

Author

Search Results

Technical Paper

A Consideration of Vehicle's Door Shutting Performance

1981-02-01
810101
Many papers have mentioned, in passing, a phenomena that is known as “airtightness”, which is one factor that hinders automobile doors from closing. It also causes the eardrums of any passengers in the vehicle to be temporarily pressurized when the door is closed. However, few documents have considered this phenomena in detail. In this paper, we investigate the magnitude of “airtightness” as it affects ear pressure and examine its relationship to such factors as the volume of the passenger compartment, door's opening area and its inertial moment. Finally, we utilized estimation methods to predict its influence on the force required to close the door and the amount of the resultant air draft.
Technical Paper

A Lightweight, Multifunctional Plastic Reinforcement for Body Panels

1990-02-01
900292
A light weight,multifunctional plastic reinforcement has been developed for the outer body panels of vehicles. This new plastic reinforcement,composed mainly of polyvinylchloride resin, epoxy resin and an organic foaming agent, provides a 63% weight reduction over conventional plastic reinforcements, while adding the damping function to outer body panels. This paper introduces the process followed in developing the new plastic reinforcement and describes its characteristics. This new plastic reinforcement is already employed in the Nissan S-Cargo model, and it will be adopted in other passenger car models to be released in the near future.
Technical Paper

A Lubrication Analysis of Multi Link VCR Engine Components using a Mixed Elasto-Hydrodynamic Lubrication Theory Model

2009-04-20
2009-01-1062
Research is under way on an engine system [1] that achieves a variable compression ratio using a multiple-link mechanism between the crankshaft and pistons for the dual purpose of improving fuel economy and power output. At present, there is no database that allows direct judgment of the feasibility of the specific sliding parts in this mechanism. In this paper, the feasibility was examined by making a comparison with the sliding characteristics and material properties of conventional engine parts, for which databases exist, and using evaluation parameters based on mixed elasto-hydrodynamic (EHD) lubrication calculations. In addition, the innovations made to the mixed EHD calculation method used in this study to facilitate calculations under various lubrication conditions are also explained, including the treatment of surface roughness, wear progress and stiffness around the bearings.
Technical Paper

A Method for Predicting Connecting Rod Bearings Reliability Based on Seizure and Wear Analysis

1988-02-01
880568
Maintaining reliability of the connecting rod bearing is a very important subject, and the following is a problem that needs to be overcome. Predicting reliability has generally depended on minimum oil film thickness (M.O.F.T), but recently, the engines of passenger cars which have greater power and speed potential than conventional ones are sometimes run beyond their M.O.F.T. limit (a degree of roughness around the crank shaft's axis.) In such a case, it is so difficult to predict reliability according to M.O.F.T., that we need a new index which directly shows seizure and wear. For this purpose, we found that the crank shaft pin temperature can be a key cause of seizure and wear according to an analysis of the relationship between its temperature and the seizure and wear caused intentionally. Using this method, we confirmed that the combination of bearing and crank shaft materials is very important for preventing seizure and wear.
Technical Paper

A Study of Car Body Structure to Reduce Environmental Burdens

2003-10-27
2003-01-2833
In the initial design stage, it is important to discuss what kind of body concept is effective from a viewpoint of environment burden reduction. This paper describes the importance of both weight reduction and recycling through conducting LCA (Life Cycle Assessment) for four kinds of body structures. In addition, using each software, DFMA (Design for Manufacture and Assembly), DFE (Design for Environment) and LCA to parts unit, each effectiveness was discussed through the assessment of the material-hybrid body.
Technical Paper

A Study on Engine Bearing Wear and Fatigue Using EHL Analysis and Experimental Analysis

1999-05-03
1999-01-1514
The possibility of predicting engine bearing durability by elastohydrodynamic lubrication (EHL) calculations was investigated with the aim of being able to improve durability efficiently without conducting numerous confirmation tests. This study focused on the connecting rod big-end bearing of an automotive engine. The mechanisms of wear and fatigue, which determine bearing durability, were estimated by comparing the results of EHL analysis and experimental data. This comparison showed the possibility of predicting the wear amount and the occurrence of fatigue by calculation.
Technical Paper

A Study on the Cyclic Plastic Zone Size Method, ω*, for Digital Fatigue Life Prediction of Arc-Welded Joints

2003-10-27
2003-01-2835
Various prediction methods have been proposed for evaluating the fatigue life of welded joints by combining finite element analysis (FEA) with an experimental database. However, to obtain more universal and accurate fatigue life predictions, it is necessary to have criteria for making integrated evaluations of the fatigue strength of welded joints. This paper presents a study that focuses on the local cyclic plastic zone size (ω*) as the criterion of fatigue strength and investigates its validity. The definition of ω* was given by the relationship between the stress state at the notch tip and the elastic strain which was defined along the strain-life fatigue curve (ε - N diagram) of a base metal. As a result of using ω*, it was found that an integrated fatigue life prediction was possible to a certain extent for notch and arc-welded joint specimens.
Technical Paper

Aerodynamic Development of the Newly Developed Electric Vehicle

2011-05-17
2011-39-7230
This paper explains the specific measures taken to develop the body and underfloor of the newly developed Electric Vehicle for the purpose of reducing drag. Additionally, the headlamps and fenders were designed with innovative shapes to reduce wind noise that occurs near the outside mirrors. As a result of utilizing the aerodynamic advantages of an electric vehicle to maximum effect, The newly developed Electric Vehicle achieves a class-leading drag coefficient and interior quietness.
Technical Paper

Aerodynamics Development for a New EV Hatchback Considering Crosswind Sensitivity

2018-04-03
2018-01-0715
An electric vehicle (EV) has less powertrain energy loss than an internal combustion engine vehicle (ICE), so its aerodynamic accounts have a larger portion of drag contribution of the total energy loss. This means that EV aerodynamic performance has a larger impact on the all-electric range (AER). Therefore, the target set for the aerodynamics development for a new EV hatchback was to improving AER for the customer’s benefit. To achieve lower aerodynamic drag than the previous model’s good aerodynamic performance, an ideal airflow wake structure was initially defined for the new EV hatchback that has a flat underbody with no exhaust system. Several important parameters were specified and proper numerical values for the ideal airflow were defined for them. As a result, the new EV hatchback achieves a 4% reduction in drag coefficient (CD) from the previous model.
Technical Paper

An Automatic Sealing Robot System for Cars

1987-11-08
871258
Car rust has been a big problem. To improve the effectiveness of rustproofing, car materials and some methods are being developed. Sealing the seams of body panels is one important method. But the sealing operation is a difficult process and it is not easy to maintain quality standards for workmen and automatized systems. To overcome this problem, we developed an automatic robot sealing system with following features: 1. The system can be easily installed on an existing conveyor and follows the line conveyor in synchronization during sealing operation. 2. Small robots can cover wide area inside the vihecle. 3. New sealant supply controllers can regurate the supply rate in response to speed and motion of robots with a high accuracy. This system has already been installed in the Murayma plant and has proved successful in achieving a high quality sealing result.
Technical Paper

Analysis of Bumper Paint Removal and Development of Paint Removal Equipment

2000-03-06
2000-01-0740
This paper deals with the development of plastics recycling technology, which is one key to resolving environmental and natural resource problems and encouraging recycling activities. Bumpers are among the heaviest plastic auto parts, so the technology for recycling bumpers is strongly required. Paint remaining on bumpers causes the strength of the recycled material to decline and degrades its surface quality. Therefore, unless the paint is removed, it is impossible to use recycled material to manufacture new bumpers. This hampers recycling efforts and results in low-value recycled material. Consequently, it is essential to develop a simple paint removing without chemical substances for practical plastics recycling at low cost. Two topics are discussed in this paper. The first concerns the mechanism of paint removal and the development of a technique for utilizing that mechanism.
Technical Paper

Analysis of Thermal Fatigue Resistance of Engine Exhaust Parts

1991-02-01
910430
The thermal fatigue resistance of engine exhaust system parts has conventionally been evaluated in thermal fatigue tests conducted with a restrained specimen. However, the test results have not always been consistent with data obtained in engine endurance tests. Two new evaluation methods have been developed to overcome this problem. One is a method of predicting thermal fatigue life on the basis of nonlinear elastic and plastic thermal analyses performed with a finite element model and the ABAQUS program. The other is a method of evaluating exhaust system parts using an exhaust system simulator. This paper describes the concepts underlying the two methods and their relative advantages.
Technical Paper

Analysis of Tooth Surface Fatigue Strength of Automotive Transmission Gears

2007-04-16
2007-01-0117
The life of automotive transmission gears today is often governed by pitting fatigue life. Being able to predict pitting fatigue life accurately is a crucial issue. Pitting fatigue life is substantially influenced by surface hardness and tooth surface geometry. For that reason, this study examined a new method of predicting pitting fatigue life that takes into account changes in these factors over time. This method makes it possible to predict the pitting fatigue life of automotive transmission gears under a wide range of evaluation conditions with markedly better accuracy than conventional methods used previously.
Technical Paper

Application of 980 MPa Grade Advanced High Strength Steel with High Formability

2018-04-03
2018-01-0625
There are strong demands for vehicle weight reductions so as to improve fuel economy. At the same time, it is also necessary to ensure crash safety. One effective measure for accomplishing such both requirements conflicting each other is to apply advanced high strength steel (AHSS) of 780 MPa grade or higher to the vehicle body. On the other hand, higher strength steels generally tend to display lower elongation causing formability deterioration. Nissan Motor Corporation have jointly developed with steel manufacturers a new 980 MPa grade AHSS with high formability with the aim of substituting it for the currently used 590 MPa grade high-tensile steel. Several application technologies have been developed through the verifications such as formability, resistance spot weldability, crashworthiness, and delayed fracture.
Technical Paper

Application of CAP to Analyze Mechanisms Producing Dummy Injury Readings under U.S. Side Impact Test Conditions

2011-04-12
2011-01-0014
Evaluations of dummy injury readings obtained in regulatory crash tests and new car assessment program tests provide indices for the development of crash safety performance in the process of developing new vehicles. Based on these indices, vehicle body structures and occupant restraint systems are designed to meet the required occupant injury criteria. There are many types of regulatory tests and new car assessment program tests that are conducted to evaluate vehicle safety performance in side impacts. Factoring all of the multiple test configurations into the development of new vehicles requires advanced design capabilities based on a good understanding of the mechanisms producing dummy injury readings. In recent years, advances in computer-aided engineering (CAE) tools and computer processing power have made it possible to run simulations of occupant restraint systems such as side airbags and seatbelts.
Technical Paper

Application of Prediction Formulas to Aerodynamic Drag Reduction of Door Mirrors

2015-04-14
2015-01-1528
It is considered that door mirror drag is composed of not only profile drag but also interference drag that is generated by the mixing of airflow streamlines between door mirrors and vehicle body. However, the generation mechanism of interference drag remained unexplained, so elucidating mechanism for countermeasures reducing drag have been needed. In this study, the prediction formulas for door mirror drag expressed by functions in relation to velocities around the vehicle body were derived and verified by wind tunnel test. The predicted values calculated by formulas were compared with the measured values and an excellent agreement was found. In summary, new prediction formulas made it possible to examine low drag mirror including profile and interference drag.
Technical Paper

Characteristics of a Coaxial Motor Driven by Compound Current

2005-10-24
2005-01-3755
This paper describes the magnetic circuit design of a coaxial AC motor system, comprising one stator and two rotors, and the test results obtained for a prototype motor. The rotors of the motor share the same stator core and coils, and each rotor uses its magnetic part as a yoke. Magnetic flux linkage of each rotor was determined in consideration of the maximum torque/power conditions and maximum motor speed. Finite Element Method were utilized to design a magnetic circuit for achieving the magnetic flux linkage specification. Tests conducted with a prototype motor showed that the torque characteristics can be divided into magnetic torque and reluctance torque, just like an ordinary IPM motor. Each torque level was improved through field-weakening control. The combined torque obtained when the two rotors were driven simultaneously approximately equaled the sum of the individual torques when the rotors were driven independently.
Technical Paper

Current Trends of Passenger Car Gasoline Engine Oils in Japan - Report by JASO Engine Oil Subcommittee

1986-10-01
861512
Engines in Japan have higher output versus small displacement (bhp/liter) and require low phosphorus content in the engine oils to meet the most stringent exhaust emission regulation in the world. The market survey of typical API SF oils in Japan showed that the average phosphorus content was approximately 0.07 %. Under such circumstances engine oils provide good performance with the usage of secondary zinc di-alkyldithiophosphates (Zn DTP) for valve train wear protection, addition of friction modifiers for fuel economy, etc.
Technical Paper

DEVELOPMENT OF CRASH SAFETY OF THE NEWLY DEVELOPED ELECTRIC VEHICLE

2011-05-17
2011-39-7232
An electric vehicle (EV) is promising as clean energy powered vehicle, due to increased interest in fuel economy and environment in recent years. However, it requires to meet unique safety performance such as electric safety. Nissan has developed a new electric vehicle which achieves electric safety in addition to maintaining enough cruising distance and cabin space. This was achieved by I he development of an all-new platform for electric vehicles. The electric safety was enhanced by the protection of high-voltage components based on consideration of component layout and body structure, high-voltage shutdown by impact sensing system and prevention of short circuit by fuse in the battery. As an example of the protection of high-voltage components, the battery which locates under the floor was protected by elaborative packaging and multi-layer protection structure.
Technical Paper

Design Methodology for Motor Thermal Management in Vehicle Electrification

2019-12-19
2019-01-2368
In order to improve the accuracy of the coil temperature prediction, detailed fundamental experiments have been conducted on thermal resistances that are caused by the void air gap and contact surfaces. The thermal resistance of the coil around the air gap can be calculated by an air gap distance and air heat conductivity. Contact surface thermal resistance between the core and the housing was constant regardless of the press-fitting state in this experiment. Prediction accuracy of the coil temperature is improved by including the heat resistance characteristics that is obtained by the basic experiment to conjugate heat transfer analysis model.
X