Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

Comparison and Standardization of Numerical Approaches for the Prediction of Non-reacting and Reacting Diesel Sprays

2012-04-16
2012-01-1263
The primary objective of the research discussed here was to compare the commercial computational fluid dynamics (CFD) software, CONVERGE, and a prevalent open-source code, OpenFOAM, with regard to their ability to predict spray and combustion characteristics. The high-fidelity data were obtained from the Engine Combustion Network (ECN) at Sandia National Laboratory in a constant-volume combustion vessel under well-defined, controlled conditions. The experiments and simulations were performed by using two diesel surrogate fuels (i.e., n-heptane and n-dodecane) under both non-reacting and reacting conditions. Specifically, ECN data on spray penetration, liquid length, vapor penetration, mixture fraction, ignition delay, and flame lift-off length (LOL) were used to validate both codes. Results indicate that both codes can predict the above experimental characteristics very well.
Technical Paper

Parametric Comparison of Well-Mixed and Flamelet n-dodecane Spray Combustion with Engine Experiments at Well Controlled Boundary Conditions

2016-04-05
2016-01-0577
Extensive prior art within the Engine Combustion Network (ECN) using a Bosch single axial-hole injector called ‘Spray A’ in constant-volume vessels has provided a solid foundation from which to evaluate modeling tools relevant to spray combustion. In this paper, a new experiment using a Bosch three-hole nozzle called ‘Spray B’ mounted in a 2.34 L heavy-duty optical engine is compared to sector-mesh engine simulations. Two different approaches are employed to model combustion: the ‘well-mixed model’ considers every cell as a homogeneous reactor and employs multi-zone chemistry to reduce the computational time. The ‘flamelet’ approach represents combustion by an ensemble of laminar diffusion flames evolving in the mixture fraction space and can resolve the influence of mixing, or ‘turbulence-chemistry interactions,’ through the influence of the scalar dissipation rate on combustion.
X