Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of an Abdominal Deformation Measuring System for Hybrid III Dummy

1994-11-01
942223
A new abdominal deformation measuring system for Hybrid III dummy has been developed in order to evaluate the abdominal injury by using the dummy. From the dynamic abdominal deformation of the dummy, the abdominal compression velocity V, the compression ratio C, and the maximum value of the product VC, expressed as [VC]MAX, can be calculated. This abdominal deformation measuring system consists of an abdominal insert having the same compression characteristics as those of the human body, a dynamic deformation sensor, and an analysis program. The abdominal insert is made of elastic foam rubber and has a shape fitted to Hybrid III. The deformation sensor in a band shape is a thin stainless steel band with 25 strain gauges on it. Each strain gauge measures the curvature on its mounted position. Since the deformation sensor is located along the surface of the dummy abdomen, the sensor deforms as the dummy surface deforms.
Technical Paper

Structural and Material Changes in the Aging Thorax and Their Role in Crash Protection for Older Occupants

2005-11-09
2005-22-0011
The human body undergoes a variety of changes as it ages through adulthood. These include both morphological (structural) changes (e.g., increased thoracic kyphosis) and material changes (e.g., osteoporosis). The purpose of this study is to evaluate structural changes that occur in the aging bony thorax and to assess the importance of these changes relative to the well-established material changes. The study involved two primary components. First, full-thorax computed tomography (CT) scans of 161 patients, age 18 to 89 years, were analyzed to quantify the angle of the ribs in the sagittal plane. A significant association between the angle of the ribs and age was identified, with the ribs becoming more perpendicular to the spine as age increased (0.08 degrees/year, p=0.012). Next, a finite element model of the thorax was used to evaluate the importance of this rib angle change relative to other factors associated with aging.
X