Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

A Computational Model Describing the Performance of a Ceramic Diesel Particulate Trap in Steady-State Operation and Over a Transient Cycle

1999-03-01
1999-01-0465
A model for calculating the trap pressure drop, various particulate properties, filtration characteristics and trap temperatures was developed during the steady-state and transient cycles using the theory originated by Opris and Johnson, 1998. This model was validated with the data obtained from the steady-state cycles run with an IBIDEN SiC diesel particulate filter. To evaluate the trap experimental filtration efficiency, raw exhaust samples were taken upstream and downstream of the trap. A trap scaling and equivalent comparison model was developed for comparing different traps at the same volume and same filtration area. Using the model, the trap pressure drop data obtained from different traps were compared equivalently at the same trap volume and same filtration area. The pressure drop performance of the IBIDEN SiC trap compared favorably to the previously tested NoTox SiC and the Cordierite traps.
Technical Paper

A Review of Diesel Particulate Control Technology and Emissions Effects - 1992 Horning Memorial Award Lecture

1994-03-01
940233
Studies have been conducted at Michigan Technological University (MTU) for over twenty years on methods for characterizing and controlling particulate emissions from heavy-duty diesel engines and the resulting effects on regulated and unregulated emissions. During that time, control technologies have developed in response to more stringent EPA standards for diesel emissions. This paper is a review of: 1) modern emission control technologies, 2) emissions sampling and chemical, physical and biological characterization methods and 3) summary results from recent studies conducted at MTU on heavy-duty diesel engines with a trap and an oxidation catalytic converter (OCC) operated on three different fuels. Control technology developments discussed are particulate traps, catalysts, advances in engine design, the application of exhaust gas recirculation (EGR), and modifications of fuel formulations.
Technical Paper

A Statistical Approach to Determining the Effects of Speed, Load, Oil and Coolant Temperature on Diesel Engine Specific Fuel Consumption

1978-02-01
780971
Experimental Brake Specific Fuel Consumption (BSFC) data are presented for two engines as a function of engine speed, load, outlet coolant temperature and inlet oil temperature. The engines used in the study were the Cummins VT-903 (turbocharged) and the Caterpillar 3208, both being direct-injection and four-cycle. The data were taken for the Cat 3208 engine using a fractional factorial statistical method which reduced the total test matrix from 256 to 64 data points. The experimental data are used in the development of BSFC regression equations as a function of load, speed, outlet coolant temperature and inlet oil temperatures. A mathematical parameter for expressing quantitatively the change of BSFC per 10°F change in coolant and oil temperature is presented. It was found that an increase in the coolant and/or oil temperatures had the effect of reducing BSFC in both engines.
Technical Paper

Cooperative Evaluation of Techniques for Measuring Diesel Exhaust Odor Using the Diesel Odor Analysis System (DOAS)

1980-02-01
800422
The CRC-APRAC CAPI-1-64 Odor Panel was formed in 1973 to assess an instrumental measurement system for diesel exhaust odor (DOAS) developed under CRC-APRAC CAPE-7-68 by Arthur D. Little, Inc. Four cooperative studies were conducted by nine participating laboratories using common samples. The objectives of these studies were to define the DOAS system variables and to validate and improve the sampling and collection procedures. A fifth study, serving as a review of each analysis step, showed that analysis of common derived odorant samples could be conducted within acceptable limits by the participating laboratories. Three in-house sampling system design and operating parameter studies were conducted simultaneously with the cooperative work. The combined findings from the in-house and cooperative studies led to a tentative recommended procedure for measuring diesel exhaust odor.
Technical Paper

Cooperative Evaluation of Techniques for Measuring Nitric Oxide and Carbon Monoxide (Phase IV Tests)

1975-02-01
750204
This is the fourth in a series of tests conducted as a Coordinating Research Council cooperative program to evaluate the measurement methods used to analyze diesel exhaust gas constituents. A multi-cylinder engine was circulated to 15 participants who measured emissions at three engine conditions. All 15 participants measured nitric oxide and carbon monoxide with several laboratories measuring nitric oxide by both NDIR (Non-Dispersive Infrared) and CHEMI (Chemiluminescence). Some participants also measured carbon dioxide, nitrogen dioxide, oxygen, and unknown span gases. The test results are compared with the Phase III cooperative tests which involved simultaneous measurement of emissions by participants. The precision of the results was poorer in Phase IV than Phase III.
Technical Paper

Design and Computer Simulation of Microprocessor Controlled Lubricating Oil Cooling System for Truck Diesel Engine

1988-02-01
880488
A microprocessor controlled lubricating oil cooling system of truck diesel engine was designed to minimize the sump oil temperature fluctuation during start-up and nonsteady engine operations. Model reference adaptive control method is utilized in the control system design. The analysis involved in the design of the microprocessor controlled oil cooling system, and the applications of a special vehicle-engine-cooling system (VEC) computer simulation code in the implementation and testing of the model reference adaptive control strategy are described. Using the VEC simulation code, the performance of the microprocessor controlled oil cooling system and the conventionally controlled oil cooling systems were compared for the ATB, temperature disturbances, and cold weather transient tests. An explanation of each test, as well as a review of the results of comparison tests are presented.
Technical Paper

Development and Evaluation of a Diesel Powered Truck Cooling System Computer Simulation Program

1982-02-01
821048
A computer simulation program was developed to simulate the thermal responses of an on-highway, heavy duty diesel powered truck in transient operation for evaluation of cooling system performance. Mathematical models of the engine, heat exchangers, lubricating oil system, thermal control sensors (thermostat and shutterstat), auxiliary components, and the cab were formulated and calibrated to laboratory experimental data. The component models were assembled into the vehicle engine cooling system model and used to predict air-to-boil temperatures. The model has the capability to predict real time coolant, oil and cab temperatures using vehicle simulation input data over various routes.
Technical Paper

Development of the Methodology for Quantifying the 3D PM Distribution in a Catalyzed Particulate Filter with a Terahertz Wave Scanner

2014-04-01
2014-01-1573
Optimizing the performance of the aftertreatment system used on heavy duty diesel engines requires a thorough understanding of the operational characteristics of the individual components. Within this, understanding the performance of the catalyzed particulate filter (CPF), and the development of an accurate CPF model, requires knowledge of the particulate matter (PM) distribution throughout the substrate. Experimental measurements of the PM distribution provide the detailed interactions of PM loading, passive oxidation, and active regeneration. Recently, a terahertz wave scanner has been developed that can non-destructively measure the three dimensional (3D) PM distribution. To enable quantitative comparisons of the PM distributions collected under different operational conditions, it is beneficial if the results can be discussed in terms of the axial, radial, and angular directions.
Technical Paper

Effects of an Oxidation Catalytic Converter on Regulated and Unregulated Diesel Emissions

1994-03-01
940243
In this study, the effects of an oxidation catalytic converter (OCC) on regulated and unregulated emissions from a 1991 prototype Cummins I.10-310 diesel engine fueled with a 0.01 weight percent sulfur fuel were investigated. The OCC's effects were determined by measuring and comparing selected raw exhaust emissions with and without the platinum-based OCC installed in the exhaust system, with the engine operated at three steady-state modes. It was found that the OCC had no significant effect on oxides of nitrogen (NOX) and nitric oxide (NO) at any mode, but reduced hydrocarbon (HC) emmissions by 60 to 70 percent. The OCC reduced total particulate matter (TPM) levels by 27 to 54 percent, primarily resulting from 53 to 71 percent reductions of the soluble organic fraction (SOF). The OCC increased sulfate (SO42-) levels at two of the three modes (modes 9 and 10), but the overall SO42- contribution to TPM was less than 6 percent at all modes due to the low sulfur level of the fuel.
Technical Paper

Extended Kalman Filter Estimator for NH3 Storage, NO, NO2 and NH3 Estimation in a SCR

2013-04-08
2013-01-1581
This paper focuses on the development of an Extended Kalman Filter for estimating internal species concentration and storage states of an SCR using NOX and NH₃ sensors. The motivation for this work was twofold. First, knowledge of internal states may be useful for onboard diagnostic strategy development. In particular, significant errors between the outlet NOX or NH₃ sensors, reconstructed from estimated states, and the measured NOX or NH₃ concentrations may aid OBD strategies that attempt to identify particular system failure modes. Second, the EKF described estimates not only stored ammonia but also NO, NO₂ and NH₃ gas concentrations within and exiting the SCR. Exploiting knowledge of the individual species concentrations, instead of lumping them together as NOX, can yield improved closed loop urea controller performance in terms of reduced urea consumption and better NOX conversion.
Technical Paper

Physical Size Distribution Characterization of Diesel Particulate Matter and the Study of the Coagulation Process

1978-02-01
780788
Diesel particulate matter in both the diluted and undiluted state is subject to the processes of coagulation, condensation or evaporation, and nucleation which causes continuous changes in its physical characteristics. The Electrical Aerosol Analyzer (EAA) is used to measure the diesel particle size distribution in the MTU dilution tunnel for a naturally aspirated direct-injection diesel engine operated on the EPA 13 mode cycle. The design and development of accurate and repeatable sampling methods using the EAA are presented. These methods involve both steady-state tunnel and bag measurements. The data indicate a bimodal nature within the 0.001 to 1 μm range. The first mode termed the “embroynic mode” has a saddle point between 0.005 to 0.015 μm and the second mode termed the “aggregation mode” lies between .08 to .15 μm for the number distribution.
Technical Paper

The Characterization of the Hydrocarbon and Sulfate Fractions of Diesel Particulate Matter

1978-02-01
780111
One of the more objectionable aspects of the use of diesel engines has been the emission of particulate matter. A literature review of combustion flames, theoretical calculations and dilution tunnel experiments have been performed to elucidate the chemical and physical processes involved in the formation of diesel particulate matter. A comparative dilution tunnel study of diluted and undiluted total particulate data provided evidence supporting calculations that indicate hydro-carbon condensation should occur in the tunnel at low exhaust temperatures. The sample collection system for the measurement of total particulate matter and soluble sulfate in particulate matter on the EPA 13 mode cycle is presented. A method to correct for hydrocarbon interferences in the EPA barium chloranilate method for the determination of sulfate in particulate matter is discussed.
Technical Paper

The Design and Testing of a Computer-Controlled Cooling System for a Diesel-Powered Truck

1984-11-01
841712
The hardware and software for a prototype computer controlled cooling system for a diesel powered truck has been designed and tested. The basic requirements for this system have been defined and the control functions, previously investigated in a study using the computer simulation model, were incorporated into the software. Engine dynamometer tests on the MACK-676 engine, comparing the conventional cooling system and the computer controlled system, showed the following advantages of the computer controlled system: 1. The temperature level to which the engine warms up to at low ambient temperature, was increased. 2. The faster shutter response reduced the temperature peaks and decreased total fan activity time. 3. The faster fan response reduces fan engagement time which should improve truck fuel economy.
Technical Paper

The Effects of Ambient Temperature and Vehicle Load on a Diesel Powered Truck Cooling System Performance Using a Computer Simulation Program

1984-11-01
841710
A computer simulation model to predict the thermal responses of an on-highway heavy duty diesel truck in transient operation was used to study several important cooling system design and operating variables. The truck used in this study was an International Harvester COF-9670 cab-over-chassis vehicle equipped with a McCord radiator, Cummins NTC-350 diesel engine, Kysor fan-clutch and shutter system, aftercooler, and standard cab heater and cooling system components. Input data from several portions of a Columbus to Bloomington, Indiana route were used from the Vehicle Mission Simulation (VMS) program to determine engine and vehicle operating conditions for the computer simulation model. The thermostat-fan, thermostat-shutter-fan, and thermostat-winterfront-fan systems were studied.
Technical Paper

Unsteady Vaporization Histories and Trajectories of Fuel Drops Injected into Swirling Air

1962-01-01
620271
Single droplet theory is used to simulate the behavior of fuel sprays in high-speed open-chamber diesels. A model for sprays in still air is presented which includes the air motion induced by the spray. Calculated paths and vaporization histories for droplets injected into swirling air are also presented. It is shown that the paths of vaporizing drops are closely approximated by solid sphere calculations. The effects of swirl speed, engine rpm, and squish air motion are also investigated.
Technical Paper

Variability in Particle Emission Measurements in the Heavy Duty Transient Test

1991-02-01
910738
A study of the sources of variability in particulate measurements using the Heavy-Duty Transient Test (40 CFR Subpart N) has been conducted. It consisted of several phases: a critical examination of the test procedures, visits to representative facilities to compare and contrast facility designs and test procedures, and development of a simplified model of the systems and procedures used for the Heavy-Duty Transient Test. Some of the sources of variability include; thermophoretic deposition of particulate matter onto walls of the sampling system followed by subsequent reentrainment in an unpredictable manner, the influence of dilution and cooling upon the soluble organic fraction, inconsistency among laboratories in the engine and dynamometer control strategies, and errors in measurements of flows into and out of the secondary dilution tunnel.
X