Refine Your Search

Topic

Search Results

Technical Paper

A New Approach for Modeling Coke Particle Emissions from Large Diesel Engines Using Heavy Fuel Oil

2017-10-08
2017-01-2381
In the present study, a new approach for modelling emissions of coke particles or cenospheres from large diesel engines using HFO (Heavy fuel oil) was studied. The model used is based on a multicomponent droplet mass transfer and properties model that uses a continuous thermodynamics approach to model the complex composition of the HFO fuel and the resulting evaporation behavior of the fuel droplets. Cenospheres are modelled as the residue left in the fuel droplets towards the end of the simulation. The mass-transfer and fuel properties models were implemented into a cylinder section model based on the Wärtsilä W20 engine in the CFD-code Star CD v.4.24. Different submodels and corresponding parameters were tuned to match experimental data of cylinder pressures available from Wärtsilä for the studied cases. The results obtained from the present model were compared to experimental results found in the literature.
Technical Paper

Advances in Variable Density Wall Functions for Turbulent Flow CFD-Simulations, Emphasis on Heat Transfer

2009-06-15
2009-01-1975
A new variable density / physical property wall function formalism has been developed. The new formalism is designed to extend the validity range of wall functions to cover both the low- and high-Reynolds-number domains so that the restrictions on the non-dimensional near-wall mesh resolution can be avoided. The new formalism also accounts for the temperature gradient induced variations of density, viscosity, heat conductivity and specific heat capacity. The new wall function formalism is constructed in conjunction with a modified low-Reynolds-number turbulence model in order to avoid the conflicting requirements of low- and high-Reynolds-number models on the near wall mesh resolution. The new formulation is validated with test simulations of strongly heated air flows in circular tube against measurements and Direct Numerical Simulation (DNS) results.
Technical Paper

An Experimental Study on High Pressure Pulsed Jets for DI Gas Engine Using Planar Laser-Induced Fluorescence

2012-09-10
2012-01-1655
Compressed natural gas direct-injection (CNG-DI) engines based on diesel cycle combustion system with pilot ignition have ability to achieve high thermal efficiency and low emissions. Generally, underexpanded jets can be formed when the high pressure natural gas is injected into the combustion chamber. In such conditions, shock wave phenomena are the typical behaviors of the jet, which can significantly influence the downstream flow structure and turbulent mixing. In the present study, the characteristics of high-pressure transient jets were investigated using planar laser-induced fluorescence (PLIF) of acetone as a fuel tracer. The evolution of the pulsed jet shows that there are three typical jet flow patterns (subsonic, moderately underexpanded, and highly underexpanded) during the injection. The full injection process of high-pressure pulsed jets is well described with the help of these shock wave structures.
Technical Paper

An Optical Characterization of Dual-Fuel Combustion in a Heavy-Duty Diesel Engine

2018-04-03
2018-01-0252
Dual fuel (DF) combustion technology as a feasible approach controlling engine-out emissions facilitates the concept of fuel flexibility in diesel engines. The abundance of natural gas (90-95% methane) and its relatively low-price and the clean-burning characteristic has attracted the interest of engine manufacturers. Moreover, with the low C/H ratio and very low soot producing tendency of methane combined with high engine efficiency makes it a viable primary fuel for diesel engines. However, the fundamental knowledge on in-cylinder combustion phenomena still remains limited and needs to be studied for further advances in the research on DF technology. The objective of this study is to investigate the ignition delay with the effect of, 1) methane equivalence ratio, 2) intake air temperature and 3) pilot ratio on the diesel-methane DF-combustion. Combustion phenomenon was visualized in a single cylinder heavy-duty diesel engine modified for DF operations with an optical access.
Technical Paper

Analyzing Local Combustion Environment with a Flamelet Model and Detailed Chemistry

2012-04-16
2012-01-0150
Measurements have been done in order to obtain information concerning the effect of EGR for the smoke and NOx emissions of a heavy-duty diesel engine. Measured smoke number and NOx emissions are explained using detailed chemical kinetic calculations and CFD simulations. The local conditions in the research engine are analyzed by creating equivalence ratio - temperature (Phi-T) maps and analyzing the CFD results within these maps. The study uses different amounts of EGR and the standard EN590 diesel fuel. The detailed chemical kinetic calculations take into account the different EGR rates. The CFD calculations are made with a flamelet-based combustion model together with detailed chemistry. The results are compared to a previous study where a hybrid local flame area evolution model combined with an eddy breakup - type model was used in the CFD simulations.
Technical Paper

Applying Soot Phi-T Maps for Engineering CFD Applications in Diesel Engines

2005-10-24
2005-01-3856
Soot modeling has become increasingly important as diesel engine manufacturers are faced with constantly tightening soot emission limits. As such the accuracy of the soot models used is more and more important but at the same time 3-D CFD engine studies require models that are computationally not too demanding. In this study, soot Phi-T maps created with detailed chemistry code have been used to develop a soot model for engineering purposes. The proposed soot model was first validated against detailed chemistry results in premixed laminar environment. As turbulence in engines is of major importance, it was taken into account in the soot oxidation part of the model with the laminar and turbulent characteristic time- type of approach. Finally, the model was tested in a large bore Diesel engine with varying loads. Within the steps described above, the proposed model was also compared with the well-known Hiroyasu-Magnussen soot model.
Technical Paper

CFD Modeling of the Initial Turbulence Prior to Combustion in a Large Bore Diesel Engine

2008-04-14
2008-01-0977
The study aims at providing more accurate initial conditions for turbulence prior to combustion with the help of a four valve, large bore diesel engine CFD model. Combustion simulations are typically done with a sector mesh and initial turbulence in these simulations is usually taken from relatively inaccurate correlations. This study also aims at developing a more accurate initial turbulence correlation for combustion simulations. A one-dimensional model was first used to provide boundary conditions as well as the initial flow conditions at the beginning of the simulation. Steady state and transient boundary conditions were studied. Also, the standard κ - ε and RNG/κ - ε turbulence models were compared. From the averaged values of turbulence kinetic energy and its dissipation rate over the cylinder volume, a re-tuned correlation for defining the initial turbulent conditions at bottom dead center (BDC) prior to the compression stroke is proposed.
Journal Article

Characteristics of High Pressure Jets for Direct Injection Gas Engine

2013-04-08
2013-01-1619
The direct injection (DI) natural gas engine is considered as one of the promising technologies to achieve the continuing goals of the higher efficiency and reduced emissions for internal combustion engines. Shock wave phenomena can easily occur near the nozzle exit when high pressure gaseous fuel is injected directly into the engine cylinder. In the present study, high pressure gas issuing from a prototype gas injector was experimentally studied using planar laser-induced fluorescence (PLIF) technique. Acetone was selected as a fuel tracer. The effects of injection pressures on the flow structure and turbulent mixing were investigated based on a series of high resolution images. The jet macroscopic structures, such as jet penetration, cone angle and jet volume, are analyzed under different injection pressures. Results show that barrel shock waves can significantly influence the jet flow structure and turbulent mixing.
Technical Paper

Comparing Single-Step and Multi-Step Chemistry Using The Laminar and Turbulent Characteristic Time Combustion Model In Two Diesel Engines

2002-05-06
2002-01-1749
Three-dimensional diesel engine combustion simulations with single-step chemistry have been compared with two-step and three-step chemistry by means of the Laminar and Turbulent Characteristic Time Combustion model using the Star-CD program. The second reaction describes the oxidation of CO and the third reaction describes the combustion of H2. The comparisons have been performed for two heavy-duty diesel engines. The two-step chemistry was investigated for a purely kinetically controlled, for a mixing limited and for a combination of kinetically and mixing limited oxidation. For the latter case, two different descriptions of the laminar reaction rates were also tested. The best agreement with the experimental cylinder pressure has been achieved with the three-step mechanism but the differences with respect to the two-step and single-step reactions were small.
Technical Paper

Comparison Between Single-Step and Two-Step Chemistry in a Compression Ignition Free Piston Engine

2000-10-16
2000-01-2937
The focus of this paper is to compare results from 3D combustion simulations when using either a single-step or a two-step description of the chemistry of combustion in a two stroke free piston diesel engine. To reduce the computational cost, only one sector of the whole cylinder is computed, i.e. one fuel spray. The simulation starts after the exhaust ports are closed and ends before the exhaust ports opening. The fuel injection is described by a Lagrangian method where the break up and interaction of the droplets are taken into account as well as droplet wall interaction and evaporation. Turbulence is modeled using the standard high Reynolds number k-ε model. The combustion of fuel vapor is modeled by the the Eddy Dissipation Combustion Model (EDCM). In the case of two-step chemistry, the combustion of CO is taken into account. The kinetic rate of CO combustion is determined from a global expression.
Technical Paper

Computational Considerations of Fuel Spray Mixing in an HCCI Operated Optical Diesel Engine

2009-04-20
2009-01-0710
Fuel spray mixing has been analyzed numerically in a single-cylinder optical research engine with a flat piston top. In the study, a narrow spray angle has been used to align the sprays towards the piston top. Fuel spray mass flow rate has been simulated with 1-D code in order to have reliable boundary condition for the CFD simulations. Different start of fuel injections were tested as well as three charge air pressures and two initial mixture temperatures. Quantitative analysis was performed for the evaporation rates, mixture homogeneity at top dead center, and for the local air-fuel ratios. One of the observations of this study was that there exists an optimum start of fuel injection when the rate of spray evaporation and the mixture homogeneity are considered.
Technical Paper

Conjugate Heat Transfer in CI Engine CFD Simulations

2008-04-14
2008-01-0973
The development of new high power diesel engines is continually going for increased mean effective pressures and consequently increased thermal loads on combustion chamber walls close to the limits of endurance. Therefore accurate CFD simulation of conjugate heat transfer on the walls becomes a very important part of the development. In this study the heat transfer and temperature on piston surface was studied using conjugate heat transfer model along with a variety of near wall treatments for turbulence. New wall functions that account for variable density were implemented and tested against standard wall functions and against the hybrid near wall treatment readily available in a CFD software Star-CD.
Technical Paper

Effect of Intake Channel Design to Cylinder Charge and Initial Swirl

2010-04-12
2010-01-0624
Two different medium-speed diesel engine cylinder head designs have been studied. The focus of the study has been the effect of intake channel design in the in-cylinder flow. The study has been carried out by CFD. The first cylinder head is a standard Wärtsilä 20 cylinder head and the second one is a specially designed head for a single cylinder research engine, called Extreme Value Engine (EVE). The CFD boundary conditions have been simulated by the help of a 1-d simulation code. In the full load cases the maximum cylinder pressure was 300 bar. Simulations have been done at lower load level too. One simulation with the new cylinder head was carried out with one intake valve closed in order to get an idea of the swirl to be generated by this approach. In the study the in-cylinder flow field, the cylinder charge and turbulence kinetic energy have been examined.
Technical Paper

Effect of Turbulence Boundary Conditions to CFD Simulation

2011-04-12
2011-01-0835
The CFD simulation of diesel combustion needs as accurate initial values as possible to be reliable. In this paper the effect of spatial distribution of state and turbulence values at intake valve closure to those distributions prior to SOI is studied. Totally five cases of intake and compression stroke simulations are run. The only change between cases is the intake boundary condition of turbulence. In the last case the average values of p, T, k, ε and swirl number at intake valve closure are used as initial values to compression simulation. The turbulence in the engine cylinder is mainly generated in the very fast flow over the intake valves. In this paper the effect of boundary conditions of turbulence to its level at intake valve closure is studied. Several cases are simulated with different boundary conditions of turbulence. Also the swirl number is compared to experimental value.
Technical Paper

Experimental Study on Engine Performance Fueled with Ammonia-Hydrogen Blend Ignited by Diesel Pilot

2024-04-09
2024-01-2365
The global energy crisis and drastic climate change are continuously promoting the implementation of sustainable energy sources. To meet the emission standards and carbon-neutrality targets in vehicle industry, ammonia is considered to be one of the promising carbon-neutral fuels. However, running the engines on high amounts of ammonia may lead to significantly high ammonia slip. This originates huge safety concerns. Therefore, hydrogen is added in certain ratio with ammonia to promote combustion and reduce ammonia slip. Furthermore, adding diesel as a pilot fuel further facilitates the combustion reactions. This experimental study investigated the effect of different ammonia-hydrogen blend ratios on in-cylinder pressure, heat release rate, cumulative heat release, indicated mean effective pressure (IMEP), indicated thermal efficiency (ITE), CA5 and CA50. This effect of blend ratios was tested for varied diesel pilot amounts and timings.
Technical Paper

Experimental Study on Flash Boiling of Ammonia Fuel Sprays – A Potential Alternative Fuel

2023-04-11
2023-01-0304
The current transportation fuels have been one of the biggest contributors towards climate change and greenhouse gas emissions. The use of carbon-free fuels has constantly been endorsed through legislations in order to limit the global greenhouse gas emissions. In this regard, ammonia is seen as a potential alternative fuel, because of its carbon-free nature, higher octane number and as hydrogen carrier. Furthermore, many leading maritime companies are doing enormous research and planning projects to utilize ammonia as their future carbon-free fuel by 2050. Flash boiling phenomenon can significantly improve combustion by enhancing the spray breakup process and ammonia possessing low boiling point, has a considerable potential for flash boiling. However, present literature is missing abundant research data on superheated ammonia sprays.
Technical Paper

Experimental and Numerical Investigation of Hydrogen Jet-Wall Impingement

2022-08-30
2022-01-1009
Decarbonization of the automotive industry is one of the major challenges in the transportation sector, according to the recently proposed climate neutrality policies, e.g., the EU 'Fit for 55' package. Hydrogen as a carbon-free energy career is a promising alternative fuel to reduce greenhouse gas emissions. The main objective of the present study is to investigate non-reactive hydrogen jet impingement on a piston bowl profile at different injection angles and under the effect of various pressure ratios (PR), where PR is the relative ratio of injection pressure (IP) to chamber pressure (CP). This study helps to gain further insight into the mixture formation in a heavy-duty hydrogen engine, which is critical in predicting combustion efficiency. In the experimental campaign, a typical high-speed z-type Schlieren method is applied for visualizing the jet from the lateral windows of a constant volume chamber, and two custom codes are developed for post-processing the results.
Technical Paper

Experimental and Numerical Study of a Low-Pressure Hydrogen Jet under the Effect of Nozzle Geometry and Pressure Ratio

2023-04-11
2023-01-0320
Hydrogen (H2), a potential carbon-neutral fuel, has attracted considerable attention in the automotive industry for transition toward zero-emission. Since the H2 jet dynamics play a significant role in the fuel/air mixing process of direct injection spark ignition (DISI) engines, the current study focuses on experimental and numerical investigation of a low-pressure H2 jet to assess its mixing behavior. In the experimental campaign, high-speed z-type schlieren imaging is applied in a constant volume chamber and H2 jet characteristics (penetration and cross-sectional area) are calculated by MATLAB and Python-based image post-processing. In addition, the Unsteady Reynolds-Averaged Navier-Stokes (URANS) approach is used in the commercial software Star-CCM+ for numerical simulations.
Technical Paper

Fuel Injection System Simulation with Renewable Diesel Fuels

2009-09-13
2009-24-0105
Renewable diesel-type fuels and their compatibility with a single-cylinder medium-speed research diesel engine were studied. The report consists of a literature study on the fuels, introduction of the simulation model designed and simulations made, and of the results and summary sections. The fuels studied were traditional biodiesel (fatty acid methyl ester, FAME), hydrotreated vegetable oil (HVO), Fischer-Tropsch (FT) diesel fuels and dimethyl ether (DME). According to the simulations, the behaviors of different renewable diesel fuels in the fuel injection system are quite similar to one another, with the greatest deviations found with DME. The main differences in the physical properties are fuel densities and viscosities and especially with DME compressibility, which have some predictable effect. The chemical properties of the fuels are more critical for a common rail fuel injection system.
Technical Paper

Improving the Accuracy of 1-D Fuel Injection Modeling

2012-04-16
2012-01-1256
In this study, one-dimensional fluid dynamics simulation software was utilized in producing common rail diesel fuel injection for varying injection parameters with enhanced accuracy. Injection modeling refinement is motivated by improved comprehension of the effects of various physical phenomena within the injector. In addition, refined injection results yield boundary conditions for three-dimensional CFD simulations. The criteria for successful simulation results were evaluated upon experimental test run data that have been reliably obtained, primarily total injected mass per cycle. A common rail diesel fuel delivery system and its core mechanics were presented. System factors most critical to fuel delivery were focalized. Models of two solenoid-type common rail injectors of different physical sizes and applications were enhanced.
X