Refine Your Search

Topic

Search Results

Technical Paper

A Comparison of Four Modelling Techniques for Thermoelectric Generator

2017-03-28
2017-01-0144
The application of state-of-art thermoelectric generator (TEG) in automotive engine has potential to reduce more than 2% fuel consumption and hence the CO2 emissions. This figure is expected to be increased to 5%~10% in the near future when new thermoelectric material with higher properties is fabricated. However, in order to maximize the TEG output power, there are a few issues need to be considered in the design stage such as the number of modules, the connection of modules, the geometry of the thermoelectric module, the DC-DC converter circuit, the geometry of the heat exchanger especially the hot side heat exchanger etc. These issues can only be investigated via a proper TEG model. The authors introduced four ways of TEG modelling which in the increasing complexity order are MATLB function based model, MATLAB Simscape based Simulink model, GT-power TEG model and CFD STAR-CCM+ model. Both Simscape model and GT-Power model have intrinsic dynamic model performance.
Technical Paper

A Parallel Hybrid Drive System for Small Vehicles: Architecture and Control Systems

2016-04-05
2016-01-1170
The TC48 project is developing a state-of-the-art, exceptionally low cost, 48V Plug-in hybrid electric (PHEV) demonstration drivetrain suitable for electrically powered urban driving, hybrid operation, and internal combustion engine powered high speed motoring. This paper explains the motivation for the project, and presents the layout options considered and the rationale by which these were reduced. The vehicle simulation model used to evaluate the layout options is described and discussed. The modelling work was used in order to support and justify the design choices made. The design of the vehicle's control systems is discussed, presenting simulation results. The physical embodiment of the design is not reported in this paper. The paper describes analysis of small vehicles in the marketplace, including aspects of range and cost, leading to the justification for the specification of the TC48 system.
Technical Paper

A Predictive Model of Pmax and IMEP for Intra-Cycle Control

2014-04-01
2014-01-1344
In order to identify predictive models for a diesel engine combustion process, combustion cylinder pressure together with other fuel path variables such as rail pressure, injector current and sleeve pressure of 1000 continuous cycles were sampled and collected at high resolution. Using these engine steady state test data, three types of modeling approach have been studied. The first is the Auto-Regressive-Moving-Average (ARMA) model which had limited prediction ability for both peak combustion pressure (Pmax) and Indicated Mean Effective Pressure (IMEP). By applying correlation analysis, proper inputs were found for a linear predictive model of Pmax and IMEP respectively. The prediction performance of this linear model is excellent with a 30% fit number for both Pmax and IMEP. Further nonlinear modeling work shows that even a nonlinear Neural Network (NN) model does not have improved prediction performance compared to the linear predictive model.
Journal Article

Accurate and Continuous Fuel Flow Rate Measurement Prediction for Real Time Application

2011-04-12
2011-01-1303
One of the most critical challenges currently facing the diesel engine industry is how to improve fuel economy under emission regulations. Improvement in fuel economy can be achieved by precisely controlling Air/Fuel ratio and by monitoring fuel consumption in real time. Accurate and repeatable measurements of fuel rate play a critical role in successfully controlling air/fuel ratio and in monitoring fuel consumption. Volumetric and gravimetric measurements are well-known methods for measuring fuel consumption of internal combustion engines. However, these methods are not suitable for obtaining fuel flow rate data used in real-time control/measurement. In this paper, neural networks are used to solve the problem concerning discontinuous data of fuel flow rate measured by using an AVL 733 s fuel meter. The continuous parts of discontinuous fuel flow rate are used to train and validate a neural network, which can then be used to predict the discontinuous parts of the fuel flow rate.
Technical Paper

Analysis of the Impact on Diesel Engine Fuel Economy and Emissions by Variable Compression Ratio Using GT-Power Simulation

2010-04-12
2010-01-1113
Variable compression ratio in conjunction with a control system is an effective way to improve performance and reduce emissions in a diesel engine. There are various methods that may be employed that include geometry changes and varying valve timing to change the effective compression ratio. In this paper, a simulation study is presented that is based on a modern, multi-cylinder, fixed compression ratio diesel engine equipped with exhaust gas recirculation (EGR) and a variable geometry turbocharger (VGT). The engine is represented using the GT-Power code, and includes a predictive combustion model. The aim of the investigation is to identify the impact of variable compression ratio on fuel economy and emission reduction and whether realistic optimal conditions exist. This paper describes how a formal design of experiments procedure is used to define the simulation conditions. Cost functions are defined with different weights for fuel consumption, NOx and soot emissions.
Technical Paper

BSFC Investigation Using Variable Valve Timing in a Heavy Duty Diesel Engine

2009-04-20
2009-01-1525
Variable valve actuation in heavy duty diesel engines is not well documented, because of diesel engine feature, such as, unthrottled air handling, which gives little room to improve pumping loss; a very high compression ratio, which makes the clearance between the piston and valve small at the top dead center. In order to avoid strike the piston while maximizing the valve movement scope, different strategies are adopted in this paper: (1) While exhaust valve closing is fixed, exhaust valve opening is changed; (2) While exhaust valve closing is fixed, late exhaust valve opening: (3) While inlet valve opening is fixed, inlet valve closing is changed; (4) Delayed Inlet valve and exhaust valve openings and closings; (5) Changing exhaust valve timing; (6) changing inlet valve timing; (7) Changing both inlet and exhaust timing, will be used.
Technical Paper

Benefiting from Sobol Sequences Experiment Design Type for Model-based Calibration

2015-04-14
2015-01-1640
Design of Experiments (DOE) introduces a number of design types such as space filling design and optimal design. However, optimal design type is best for a system with high prior knowledge. Meanwhile, space-filling design is good for unknown systems, which is normal for engine calibration. It would be best to have a design that can support constructive model building, where a block of engine test is run for most of the day and followed by engine modeling at the end of the day. However, this needs separate space filling design for each day and separate design is susceptible to redundant test points. Among of the five space-filling design type, Sobol sequences and Halton sequences can support constructive model building due to the deterministic random sequence characteristic. When the model is good enough for system prediction, the remaining engine test can stop and proceed to model optimization.
Technical Paper

Can Infotronics Enable Competitiveness of Electric Drive Vehicles?

1998-10-19
98C055
The hybrid electric vehicle (HEV) is already available commercially and is demonstrating the very significant benefit of improved fuel consumption. The costs associated with the hybrid vehicle are still high, and for novel types of auxiliary power unit are still undefined. Measures to improve the performance of HEV technology are emerging and include the traffic and navigation information which forms part of the telematics infrastructure. One of the key issues in enhancing HEV performance is journey prediction. Journey time and energy requirements can be products of a telematics system but form the basis for a significant performance enhancement to an HEV.
Technical Paper

Challenges and Potential of Intra-Cycle Combustion Control for Direct Injection Diesel Engines

2012-04-16
2012-01-1158
The injection timing of a Diesel internal combustion engine typically follows a prescribed sequence depending on the operating condition using open loop control. Due to advances in sensors and digital electronics it is now possible to implement closed loop control based on in cylinder pressure values. Typically this control action is slow, and it may take several cycles or at least one cycle (cycle-to-cycle control). Using high speed sensors, it becomes technically possible to measure pressure deviations and correct them within the same cycle (intra-cycle control). For example the in cylinder pressure after the pilot inject can be measured, and the timing of the main injection can be adjusted in timing and duration to compensate any deviations in pressure from the expected reference value. This level of control can significantly reduce the deviations between cycles and cylinders, and it can also improve the transient behavior of the engine.
Technical Paper

Combustion Model Based Explanation of the Pmax and IMEP Coupling Phenomenon in Diesel Engine

2014-04-01
2014-01-1350
A three-pulse fuel injection mode has been studied by implementing two-input-two-output (2I2O) control of both peak combustion pressure (Pmax) and indicated mean effective pressure (IMEP). The engine test results show that at low engine speed, the first main injection duration and the second main injection duration are able to be used to control Pmax and IMEP respectively. This control is exercised within a limited but promising area of the engine map. However, at high engine speed, Pmax and IMEP are strongly coupled together and then can not be separately controlled by the two control variables: the first and the second main injection duration. A simple zero-dimensional (0D) combustion model together with correlation analysis method was used to find out why the coupling strength of Pmax and IMEP increases with engine speed increased.
Technical Paper

Control Oriented Models for Exhaust Gas Aftertreatment; A Review and Prospects

2003-03-03
2003-01-1004
Modeling is of increasing significance to the automotive applications of catalyst systems. For exhaust gas after-treatment, prediction of exhaust emissions plays an important role in the design process for new vehicles. However both control and diagnosis requirements on the vehicle have created the need for control-oriented models. A control-oriented model is both compact and accurate and may be embedded in a computer system as a component of a real-time algorithm. Modeling of catalysts can take place at a molecular level where computational techniques are only just emerging. Detailed kinetics modeling done alongside thermal and fluid modeling of the catalyst yields important details about the dynamic behavior of the catalyst system. Approaches to developing control-oriented model have tended to use the simplest statements of kinetics. In general, the development of such models requires the inclusion of some chemical kinetics.
Technical Paper

Control-Oriented Dynamics Analysis for Electrified Turbocharged Diesel Engines

2016-04-05
2016-01-0617
Engine electrification is a critical technology in the promotion of engine fuel efficiency, among which the electrified turbocharger is regarded as the promising solution in engine downsizing. By installing electrical devices on the turbocharger, the excess energy can be captured, stored, and re-used. The electrified turbocharger consists of a variable geometry turbocharger (VGT) and an electric motor (EM) within the turbocharger bearing housing, where the EM is capable in bi-directional power transfer. The VGT, EM, and exhaust gas recirculation (EGR) valve all impact the dynamics of air path. In this paper, the dynamics in an electrified turbocharged diesel engine (ETDE), especially the couplings between different loops in the air path is analyzed. Furthermore, an explicit principle in selecting control variables is proposed. Based on the analysis, a model-based multi-input multi-output (MIMO) decoupling controller is designed to regulate the air path dynamics.
Journal Article

Design and Optimisation of the Propulsion Control Strategy for a Pneumatic Hybrid City Bus

2016-04-05
2016-01-1175
A control strategy has been designed for a city bus equipped with a pneumatic hybrid propulsion system. The control system design is based on the precise management of energy flows during both energy storage and regeneration. Energy recovered from the braking process is stored in the form of compressed air that is redeployed for engine start and to supplement the engine air supply during vehicle acceleration. Operation modes are changed dynamically and the energy distribution is controlled to realize three principal functions: Stop-Start, Boost and Regenerative Braking. A forward facing simulation model facilitates an analysis of the vehicle dynamic performance, engine transient response, fuel economy and energy usage.
Journal Article

Development of Model Predictive Controller for SOFC-IC Engine Hybrid System

2009-04-20
2009-01-0146
Fuel cell hybrid systems have emerged rapidly in efforts to reduce emissions. The success of these systems mainly depends on implementation of suitable control architectures. This paper presents a control system design for a novel fuel cell - IC Engine hybrid power system. Control oriented models of the system components are developed and integrated. Based on the simulation results of the system model, the control variables are identified. The main objective for the control design is to manage fuel, air and exhaust flows in a way to deliver the required load on the system within local constraints. The controller developed for regulating flows in the system is based on model predictive control theory. The performance of the overall control system is assessed through simulations on a nonlinear dynamic model.
Technical Paper

Disturbance Sources in the Diesel Engine Combustion Process

2013-04-08
2013-01-0318
When a diesel engine is running at steady state, the diesel combustion process still has some level of variation from cycle to cycle, even if engine load and all control inputs are fixed. This variation is a disturbance for the speed governor, and it could lead to less than optimal engine performance in terms of fuel economy, exhaust gas emission and noise emission. The most effective way to reduce this steady state combustion variation is by applying fuel path feedback control. The control action can be performed at a fixed frequency, or at a defined cycle event time. Intra-cycle control has the highest capacity to suppress the combustion deviation, as it measures the current cycle combustion performance and compensates for it within the same cycle using a very fast control response. Correct knowledge and a model of the disturbance sources and combustion variation patterns are essential in the design process of this intra-cycle control strategy.
Technical Paper

Dynamic Analysis of the Libralato Thermodynamic Cycle Based Rotary Engine

2013-04-08
2013-01-1620
In this paper an initial dynamic analysis of the Libralato rotary engine prototype is conducted based on a joint engine model. Through the investigation of the Libralato thermodynamic cycle and the geometry characteristics of the engine structure, a multi-chamber core engine model is developed via GT-Power, a commercial software. The whole engine working volume is divided into 5 parts, including an intake chamber, a compression chamber, a combustion chamber, an expansion chamber and a virtual chamber which is used to correct the actual volume variation of the expansion chamber at the end of expansion stroke. The performance of the developed model is validated by experimental results. Then an initial analysis on the engine thermodynamic cycle, the engine operation characteristics and the gas exchange process is conducted. Furthermore, a multi-body mechanism model is designed to analyze the mechanical properties of the engine.
Technical Paper

Energy Recovery Systems for Engines

2008-04-14
2008-01-0309
Energy recovery from IC engines has proved to be of considerable interest across the range of vehicle applications. The motivation is substantial fuel economy gain that can be achieved with a minimal affect on the “host” technology of the vehicle. This paper reviews the initial results of a research project whose objective has been to identify system concepts and control methods for thermal recovery techniques. A vapour power cycle is the means of energy transfer. The architecture of the system is considered along with support of the fuel economy claims with the results of some hybrid vehicle modelling. An overview of the latest experimental equipment and design of the heat exchanger is presented. The choice of control architecture and strategy, whose goal is overall efficiency of the engine system, is presented and discussed. Some initial control results are presented.
Technical Paper

Evaluating the Performance Improvement of Different Pneumatic Hybrid Boost Systems and Their Ability to Reduce Turbo-Lag

2015-04-14
2015-01-1159
The objective of the work reported in this paper was to identify how turbocharger response time (“turbo-lag”) is best managed using pneumatic hybrid technology. Initially methods to improve response time have been analysed and compared. Then the evaluation of the performance improvement is conducted using two techniques: engine brake torque response and vehicle acceleration, using the engine simulation code, GT-SUITE [1]. Three pneumatic hybrid boost systems have been considered: Intake Boost System (I), Intake Port Boost System (IP) and Exhaust Boost System (E). The three systems respectively integrated in a six-cylinder 7.25 l heavy-duty diesel engine for a city bus application have been modelled. When the engine load is increased from no load to full load at 1600 rpm, the development of brake torque has been compared and analysed. The findings show that all three systems significantly reduce the engine response time, with System I giving the fastest engine response.
Journal Article

Evaluation of Spray/Wall Interaction Models under the Conditions Related to Diesel HCCI Engines

2008-06-23
2008-01-1632
Diesel homogeneous charge compression ignition (HCCI) engines with early injection can result in significant spray/wall impingement which seriously affects the fuel efficiency and emissions. In this paper, the spray/wall interaction models which are available in the literatures are reviewed, and the characteristics of modeling including spray impingement regime, splash threshold, mass fraction, size and velocity of the second droplets are summarized. Then three well developed spray/wall interaction models, O'Rourke and Amsden (OA) model, Bai and Gosman (BG) model and Han, Xu and Trigui (HXT) model, are implemented into KIVA-3V code, and validated by the experimental data from recent literatures under the conditions related to diesel HCCI engines. By comparing the spray pattern, droplet mass, size and velocity after the impingement, the thickness of the wall film and vapor distribution with the experimental data, the performance of these three models are evaluated.
Technical Paper

Explicit Model Predictive Control of the Diesel Engine Fuel Path

2012-04-16
2012-01-0893
For diesel engines, fuel path control plays a key role in achieving optimal emissions and fuel economy performance. There are several fuel path parameters that strongly affect the engine performance by changing the combustion process, by modifying for example, start of injection and fuel rail pressure. This is a multi-input multi-output problem. Linear Model Predictive Control (MPC) is a good approach for such a system with optimal solution. However, fuel path has fast dynamics. On-line optimisation MPC is not the good choice to cope with such fast dynamics. Explicit MPC uses off-line optimisation, therefore, it can be used to control the system with fast dynamics.
X