Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3-D Modeling of Diesel Engine Intake Flow, Combustion and Emissions

1991-09-01
911789
Manufacturers of heavy-duty diesel engines are facing increasingly stringent, emission standards. These standards have motivated new research efforts towards improving the performance of diesel engines. The objective of the present program is to develop a comprehensive analytical model of the diesel combustion process that can be used to explore the influence of design changes. This will enable industry to predict the effect of these changes on engine performance and emissions. A major benefit of the successful implementation of such models is that engine development time and costs would be reduced through their use. The computer model is based on the three-dimensional KIVA-II code, with state-of-the-art submodels for spray atomization, drop breakup / coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, and soot and radiation.
Technical Paper

3D Aeroacoustics Simulation of a Complete Bus Exhaust System

2012-11-25
2012-36-0632
Health related problems in over populated areas are a major concern and as such, there are specific legislations for noise generated by transport vehicles. In diesel powered commercial vehicles, the source for noise are mainly related to rolling, transmission, aerodynamics and engine. Considering internal combustion engine, three factors can be highlighted as major noise source: combustion, mechanical and tailpipe. The tailpipe noise is considered as the noise radiated from the open terminations of intake and exhaust systems, caused by both pressure pulses propagating to the open ends of the duct systems, and by vortex shedding as the burst leaves the tailpipe (flow generated noise). In order to reduce noise generated by vehicles, it is important to investigate the gas interactions and what can be improved in exhaust line design during the product development phase.
Technical Paper

3D-CFD Modelling of Gas Exchange and Combustion Inside the Expander of a Recuperated Split-Cycle Engine

2023-08-28
2023-24-0130
The demand of game-changing technologies to improve efficiency and abate emissions of heavy-duty trucks and off-road vehicles promoted the development of novel engine concepts. The Recuperated Split-Cycle (R-SC) engine allows to recover the exhaust gases energy into the air intake by separating the compression and combustion stages into two different but connected cylinders: the compressor and expander, respectively. The result is a potential increase of the engine thermal efficiency. Accordingly, the 3D-computational fluid dynamics (CFD) modelling of the gas exchange process and the combustion evolution inside the expander becomes essential to control and optimize the R-SC engine concept. This work aims to address the most challenging numerical aspects encountered in a 3D numerical simulation of an R-SC engine.
Technical Paper

A Basis for Estimating Mechanical Efficiency and Life of a Diesel Engine from its Size, Load Factor and Piston Speed

2011-09-13
2011-01-2211
Parameters like brake mean effective pressure, mean velocity of the piston, hardness of the wear surface, oil film thickness, and surface areas of critical wear parts are similar for all the diesel engines. The mean piston velocity at the rated speed is nearly the same for all the diesel engines. The mechanical efficiency normalized to an arbitrary brake mean effective pressure (bmep) is dependent on the size of the engine. The engine life seems to be proportional directly to the square of a characteristic dimension namely, cylinder bore of the engine and inversely to speed and load factor for engines varying widely in sizes and ratings.
Technical Paper

A Closed Cycle Simulation Model with Particular Reference to Two-Stroke Cycle Engines

1991-09-01
911847
A quasi-dimensional computer simulation model is presented to simulate the thermodynamic and chemical processes occurring within a spark ignition engine during compression, combustion and expansion based upon the laws of thermodynamics and the theory of equilibrium. A two-zone combustion model, with a spherically expanding flame front originating from the spark location, is applied. The flame speed is calculated by the application of a turbulent entrainment propagation model. A simplified theory for the prediction of in-cylinder charge motion is proposed which calculates the mean turbulence intensity and scale at any time during the closed cycle. It is then used to describe both heat transfer and turbulent flame propagation. The model has been designed specifically for the two-stroke cycle engine and facilitates seven of the most common combustion chamber geometries. The fundamental theory is nevertheless applicable to any four-stroke cycle engine.
Technical Paper

A Comparative Analysis of WHR System in HD Engines Using Conventional Diesel Combustion and Partially-Premixed Combustion

2012-09-24
2012-01-1930
In the truck industry there is a continuous demand to increase the efficiency and to decrease the emissions. To acknowledge both these issues a waste heat recovery system (WHR) is combined with a partially premixed combustion (PPC) engine to deliver an efficient engine system. Over the past decades numerous attempts to increase the thermal efficiency of the diesel engine has been made. One such attempt is the PPC concept that has demonstrated potential for substantially increased thermal efficiency combined with much reduced emission levels. So far most work on increasing engine efficiency has been focused on improving the thermal efficiency of the engine while WHR, which has an excellent potential for another 1-5 % fuel consumption reduction, has not been researched that much yet. In this paper a WHR system using a Rankine cycle has been developed in a modeling environment using IPSEpro.
Technical Paper

A Compressed Natural Gas Mass Flow Driven Heavy Duty Electronic Engine Management System

1993-08-01
931822
This paper describes the conversion of a stationary spark ignition engine to a heavy duty (HD) natural gas engine suitable for transportation applications, in response to the new urban truck and bus legislation of 1994 and 1998. The approach to the fuel and ignition control system is to use a microprocessor controlled engine management system based on inputs from combustion air and natural gas mass flow sensors. As the emission control system is also based on stoichiometric three way catalyst technology, it is felt that the control approach is very robust. The engine and control system were first mounted on a HD dynamometer for the development work where engine control parameters were calibrated. In addition steady state emission data were collected and estimates of the HD transient emission levels were obtained.
Technical Paper

A Computational Investigation into the Effects of Included Spray Angle on Heavy-Duty Diesel Engine Operating Parameters

2012-09-10
2012-01-1714
Effects of included spray angle with different injection strategies on combustion characteristics, performance and amount of pollutant emission have been computationally investigated in a common rail heavy-duty DI diesel engine. The CFD model was firstly validated with experimental data achieved from a Caterpillar 3401 diesel engine for a conventional part load condition at 1600 rev/min. Three different included spray angles (α = 145°, 105°, 90°) were studied in comparison with the traditional spray injection angle (α = 125°). The results show that spray targeting is very effective for controlling the in-cylinder mixture distributions especially when it accompanied with various injection strategies. It was found that 105° spray cone angle along with an optimized split pre- and post-Top Dead Center (TDC) injection strategy could significantly reduce NOx and soot emissions without much penalty of the fuel consumption, as compared to the wide spray angle.
Technical Paper

A Controllable Water Cooled Charge Air Cooler (WCCAC) for Diesel Trucks

2004-10-26
2004-01-2614
Water-cooled charge air cooling is being considered as part of various technology solutions in response to 2007 US, 2010 US, EU4 and EU5 emissions standards. As manufacturers determine appropriate engine and vehicle solutions to meet the upcoming emissions standards, charge air cooling requirements are increasing due to higher turbocharger outlet temperatures and pressures, higher EGR rates, and requests for intake manifold temperature control to manage combustion and exhaust temperatures. Valeo and EMP have collaborated on the development and testing of a water cooled charge air cooler (WCCAC), controlled by a 12 volt brushless motor coolant pump. The system design addresses material temperature limitations of air-air aluminum CAC's and has the potential to simplify the packaging of the air induction system.
Technical Paper

A Deviation-Based Centroid Displacement Method for Combustion Parameters Acquisition

2024-04-09
2024-01-2839
The absence of combustion information continues to be one of the key obstacles to the intelligent development of engines. Currently, the cost of integrating cylinder pressure sensors remains too high, prompting attention to methods for extracting combustion information from existing sensing data. Mean-value combustion models for engines are unable to capture changes of combustion parameters. Furthermore, the methods of reconstructing combustion information using sensor signals mainly depend on the working state of the sensors, and the reliability of reconstructed values is directly influenced by sensor malfunctions. Due to the concentration of operating conditions of hybrid vehicles, the reliability of priori calibration map has increased. Therefore, a combustion information reconstruction method based on priori calibration information and the fused feature deviations of existing sensing signals is proposed and named the "Deviation-based Centroid Displacement Method" (DCDM).
Journal Article

A Dual-Fuel Model of Flame Initiation and Propagation for Modelling Heavy-Duty Engines with the G-Equation

2023-09-29
2023-32-0009
We propose a novel dual-fuel combustion model for simulating heavy-duty engines with the G-Equation. Dual-Fuel combustion strategies in such engines features direct injection of a high-reactivity fuel into a lean, premixed chamber which has a high resistance to autoignition. Distinct combustion modes are present: the DI fuel auto-ignites following chemical ignition delay after spray vaporization and mixing; a reactive front is formed on its surroundings; it develops into a well-structured turbulent flame, which propagates within the premixed charge. Either direct chemistry or the flame-propagation approach (G- Equation), taken alone, do not produce accurate results. The proposed Dual-Fuel model decides what regions of the combustion chamber should be simulated with either approach, according to the local flame state; and acts as a “kernel” model for the G- Equation model. Direct chemistry is run in the regions where a premixed front is not present.
Technical Paper

A Feasibility Demonstration of an Electric Postal Delivery Vehicle

1996-08-01
961694
The technical and economic feasibility of an electric postal delivery vehicle is demonstrated and reported in this paper. Vehicle operational data are collected in a deployment of six prototype electric Long-Life Vehicles (ELLV) at postal sites in Torrance, California and Merrifield, Virginia, beginning in April, 1995. Eight months of data have been collected and are analyzed Extensive design trade studies and analyses are conducted to demonstrate the feasibility of achieving the maximum cost effectiveness of the ELLV Operating costs of the ELLV are compared to its internal combustion engine (ICE) counterpart.
Journal Article

A High Efficiency, Dilute Gasoline Engine for the Heavy-Duty Market

2012-09-24
2012-01-1979
A 13 L HD diesel engine was converted to run as a flame propagation engine using the HEDGE™ Dual-Fuel concept. This concept consists of pre-mixed gasoline ignited by a small amount of diesel fuel - i.e., a diesel micropilot. Due to the large bore size and relatively high compression ratio for a pre-mixed combustion engine, high levels of cooled EGR were used to suppress knock and reduce the engine-out emissions of the oxides of nitrogen and particulates. Previous work had indicated that the boosting of high dilution engines challenges most modern turbocharging systems, so phase I of the project consisted of extensive simulation efforts to identify an EGR configuration that would allow for high levels of EGR flow along the lug curve while minimizing pumping losses and combustion instabilities from excessive backpressure. A potential solution that provided adequate BTE potential was consisted of dual loop EGR systems to simultaneously flow high pressure and low pressure loop EGR.
Technical Paper

A Hybrid Combustion Control Strategy for Heavy Duty Diesel Engines Based on the Technologies of Multi-Pulse Injections, Variable Boost Pressure and Retarded Intake Valve Closing Timing

2011-04-12
2011-01-1382
Combustion control strategy for high efficiency and low emissions in a heavy duty (H D) diesel engine was investigated experimentally in a single cylinder test engine with a common rail fuel system, EGR (Exhaust Gas Recirculation) system, boost system and retarded intake valve closing timing actuator. For the operation loads of IMEPg (Gross Indicated Mean Effective Pressure) less than 1.1 MPa the low temperature combustion (LTC) with high rate of EGR was applied. The fuel injection modes of either single injection or multi-pulse injections, boost pressure and retarded intake valve closing timing (RIVCT) were also coupled with the engine operation condition loads for high efficiency and low emissions. A higher boost pressure played an important role in improving fuel efficiency and obtaining ultra-low soot and NOx emissions.
Technical Paper

A Hybrid Heavy-Duty Diesel Power System for Off-Road Applications - Concept Definition

2021-04-06
2021-01-0449
A multi-year Power System R&D project was initiated with the objective of developing an off-road hybrid heavy-duty concept diesel engine with front end accessory drive-integrated energy storage. This off-road hybrid engine system is expected to deliver 15-20% reduction in fuel consumption over current Tier 4 Final-based diesel engines and consists of a downsized heavy-duty diesel engine containing advanced combustion technologies, capable of elevated peak cylinder pressures and thermal efficiencies, exhaust waste heat recovery via SuperTurbo™ turbocompounding, and hybrid energy recovery through both mechanical (high speed flywheel) and electrical systems. The first year of this project focused on the definition of the hybrid elements using extensive dynamic system simulation over transient work cycles, with hybrid supervisory controls development focusing on energy recovery and transient load assist, in Caterpillar’s DYNASTY™ software environment.
Technical Paper

A Joint Work to Develop a Predictive 1D Modelling Approach for Heavy Duty Gaseous Fueled Engines through Experiments and 3D CFD Simulations

2023-08-28
2023-24-0007
The present paper reports experimental and numerical research activities devoted to deeply characterize the behavior and performance of a Heavy Duty (HD) internal combustion engine fed by compressed natural gas (CNG). Current research interest in HD engines fed by gaseous fuels with low C/H ratios is related to the well-known potential of such fuels in reducing carbon dioxide emissions, combined to extremely low particulate matter emissions too. Moreover, methane, the main CNG component, can be produced through alternative processes relying on renewable sources, or in the next future replaced by methane/H2 blends. The final goal of the presented investigations is the development of a predictive 0D combustion submodel within the framework of a 1D numerical simulation platform.
Journal Article

A Methodology to Assess Road Tankers Rollover Trend During Turning

2013-04-08
2013-01-0682
An experimental methodology is proposed to measure the rollover propensity of road tankers when subjected to lateral perturbations derived from steering manoeuvers. The testing principle involves subjecting a scaled down sprung tank to the elimination of a lateral acceleration, to analyze its rollover propensity as a function of various vehicle's operational and design parameters. Initial acceleration is generated through putting the scaled tank on a tilt table supported by a hydraulic piston. The controlled release of the fluid in the hydraulic system generates a perturbation situation for the tank, similar to the one that a vehicle experiences when leaving a curved section of the road and going to a straight segment. Durations for the maneuver and initial tilt angles characterize both the corresponding intensities of the steering maneuver.
Technical Paper

A Neat Methanol Direct Injection Combustion System for Heavy-Duty Applications

1986-09-01
861169
A combustion system has been developed to burn neat (pure) methanol in a direct-injection four-stroke-cycle engine. Primary objectives were to obtain low fuel consumption and long component life to make the engine suitable to replace heavy-duty diesel fueled engines. A glow plug was placed in a modified quiescent combustion chamber to ensure reliable methanol ignition at all engine operating conditions. The methanol engine provides thermal efficiency nearly equal to the diesel engine from which it is derived, in addition, nitrogen oxide emissions are reduced by 50 percent and exhaust smoke is negligible. Hydrocarbon emissions are still above the baseline diesel engine. Laboratory and field durability tests of over 2000 hours have been completed. Excellent cold-start capability has been established.
Technical Paper

A New Approach to Grip and Analyze Diesel Particulate Matter

2014-09-30
2014-36-0381
The internal combustion engines emit combustion gases which contain nano and micrometric particles that are harmful to human health, causing deleterious damages to the human's respiratory system. In Brazil, heavy vehicles, such as buses and trucks, have diesel engines that work under high loads and run through metropolitan areas or in intense traffic flow roads. They are considered, nowadays, the main solid particles emitter in several World's areas. There are already standard systems to analyze these particles quantitative and qualitatively at high prices collected from vehicle gases emissions in places such as bus stops. This paper presents a new method which retains solid micrometric particulate matter emitted by diesel engine. It is simple and has a relatively low cost. A sheet of textile element was encapsulated in a system for gripping micrometric particles emitted by diesel single-cylinder engine operating in a bench and coupled with a electrical generator.
Technical Paper

A New Direct Injection Combustion System for Heavy-Duty Methanol Engines

1988-09-01
881238
For the purpose of developing direct injection heavy-duty methanol engines which surpass diesel engines in purformace, this paper first clarifies the methanol concentration around the spark plug for achieving a high ignition stability by sampling the gas near the spark plug using a sampling valve. The combustion process of methanol is then observed by the method of high-speed Schlieren photography to clarify the mode of methanol combustion. A new methanol DISC combustion system having a protrusion in the combustion chamber is devised based on such results. This study clarifies that the methanol concentration at the point of ignition for high ignition stability is in the range of 6 to 22 vol%. The methanol mixture burns by flame propagation so far as the compression ratio is on the order of 16.5.
X