Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

"Nickel electroformed" tools development through stereolithography (SLA) for sheet metal forming~An evaluation study

2000-06-12
2000-05-0272
Currently, advancements in Rapid Prototyping (RP) technologies have led to considerable amount of research activities and has been playing a major role in the area of tooling development for which Rapid Tooling (RT) term was coined. While rapid prototyping techniques are employed to make prototype tools, the basic idea of the rapid tooling is to produce prototype and zero series parts by using prototype tools so the parts truly represent the future production. This paper will present an evaluation of a RP and RT technique in developing tools (punch and dies) for sheet metal forming, which had been manufactured and tested. Both punch and die have been manufactured by combining Stereolithography (SL), RP technique, with nickel electroforming process. The stereolithography technique that had been utilized in developing models for the tools had been built with modeling pattern called Accurate Clear Epoxy Solid (ACES).
Technical Paper

"Quick" tools development through stereolithography (SLA) for sheet metal forming~An evaluation study

2000-06-12
2000-05-0270
Currently, advancements in Rapid Prototyping (RP) technologies have led to considerable amount of research activities and has been playing a major role in the area of tooling development for which Rapid Tooling (RT) term was coined. Rapid prototyping techniques are employed to make prototype tools. While, the basic idea of the rapid tooling is to produce prototype and zero series parts by using prototype tools so the parts truly represent the future production. This paper will present an evaluation of a RP & RT technique in developing tools (punch and dies) for sheet metal forming, which had been manufactured and tested. Both punch and die have been manufactured directly from Stereolithography (SL). The stereolithography technique that had been utilized in developing models for the tools had been built with modeling pattern called QuickCast infiltrated with Aluminum-Filled Epoxy, designated as Quick Tool.
Technical Paper

<PP/SEBS> Compounds: Sealing an Easier Future for Automotive Designers and Specifiers

2002-07-09
2002-01-1997
There is a definite trend toward the increasing use of “Glass Encapsulation Technology” in the automotive industry. In this technology a glass object such as a window is placed within a mould and an elastomer is injected around the window giving a tight sealing system. A wide variety of materials are currently used as the sealing materials in either static or semi-static encapsulated glazing systems, including a wide range of “elastomers”. New thermoplastic elastomer compounds are being developed that are characterized by their consistent properties; including high melt-fluidity, very good surface appearance, sealing properties, and resistance to weathering. Compound performance is highly dependent on formulation variables as well as the chemistries of the base materials. KRATON® SEBS polymers1 are block copolymers of styrene and ethylene/butylene.
Technical Paper

10 Years of STOL - The Twin Otter's First Decade

1975-02-01
750596
The Twin Otter was designed as a utility bushplane for operation in the Canadian north. While it has fulfilled that role, it has also been widely adopted for use in urban commuter services which do not demand its STOL and rough field capabilities. Now, after 10 years, these commuter services are widening in scope to the point where these virtues, hitherto unused, are becoming significant. The Twin Otter, by its continued presence over this decade, has helped mould the STOL services promised for the next.
Technical Paper

100% Post-Consumer Recycled Nylon 6: Repolymerized Resin Provides Full Mechanical, Physical, & Aesthetic Properties

2000-03-06
2000-01-1394
The increased use of recycled resins can create a dilemma for automotive designers. On the one hand, there is a growing initiative to increase recycled materials content on vehicles, globally. On the other hand, traditional methods of recycling polymeric materials -both thermoplastics and thermosets - can lead to degradation of engineering, mechanical, processing, and / or aesthetic properties of the resin. In an era where quality rules, this situation forces designers to accept a much lower percentage of recyclate than they might otherwise wish to use or risk unacceptable property loss in molded parts - something no automaker can “afford ” for long. Hence, a valuable feedstream of materials (polymers) often ends up destined for a landfill once many consumer products are broken down and more easily reusable or recyclable materials are salvaged. As a case in point, each passenger car built globally contains an average of 15 - 20 kg of nylon polymers.
Technical Paper

175°C-Capable Thermoplastic Elastomers for Automotive Air Management and Sealing Applications

2007-11-28
2007-01-2576
Flexibility, oil resistance, and the need for heat resistance to 150°C-plus temperatures have traditionally limited automotive design engineers to two options - thermoset rubber or heat-shielding conventional thermoplastic elastomers (TPE). Both of these options present limitations in part design, the ability to consolidate the number of components in a part of assembly, and on total cost. This paper presents a class of high-performance, flexible thermoplastic elastomers based on dynamically vulcanized polyacrylate (ACM) elastomer dispersed in a continuous matrix of polyamide (PA) thermoplastic. These materials are capable of sustained heat resistance to 150°C and short-term heat resistance to 175°C, without requiring heat shielding. Recent advancements in blow molding and functional testing of the PA//ACM TPEs for automotive air management (ducts) and underhood sealing applications will be shown.
Technical Paper

1983 Ford Ranger Truck HSLA Steel Wheel

1982-02-01
820019
The demand for improved fuel economy in both cars and trucks has emphasized the need for lighter weight components. The application of high strength steel to wheels, both rim and disc, represents a significant opportunity for the automotive industry. This paper discusses the Ranger HSLA wheel program that achieved a 9.7 lbs. per vehicle weight savings relative to a plain carbon steel wheel of the same design. It describes the Ranger wheel specifications, the material selection, the metallurgical considerations of applying HSLA to wheels, and HSLA arc and flash butt welding. The Ranger wheel design and the development of the manufacturing process is discussed, including design modifications to accommodate the lighter gage. The results demonstrate that wheels can be successfully manufactured from low sulfur 60XK HSLA steel in a conventional high volume process (stamped disc and rolled rim) to meet all wheel performance requirements and achieve a significant weight reduction.
Technical Paper

2-D Springback Analysis for Stretch-Bending Processes Based on Total Strain Theory

1995-02-01
950691
A theoretical model is presented for predicting springback of wide sheet metal subjected to 2D-stretch-bending operation. The material is assumed to be normal anisotropic with n-th power hardening law, σ = Fεn. Two types of stretch-bending experiment, bending with simultaneous stretching and stretch-bending followed by consecutive re-stretching, is conducted using AK sheet steel and sheet aluminum alloy A5182-O. The measured values of springback are in good agreement with analytical ones for a wide range of bending radii, stretching forces, and loading conditions. Furthermore, a calculation method for predicting springback configurations of 2D sheet metal parts with arbitrary cross-sections which include both stretch-bending and stretch-bending-unbending deformation is proposed.
Technical Paper

2-D Visualization of liquid and Vapor Fuel in an I.C. Engine

1988-02-01
880521
A sheet of laser light from a frequency tripled Nd-YAG laser approximately 200μm thick is shone through the combustion chamber of a single cylinder, direct injection internal combustion engine. The injected decane contains exciplex—forming dopants which produce spectrally separated fluorescence from the liquid and vapor phases. The fluorescence signal is collected through a quartz window in the cylinder head and is imaged onto a diode array camera. The camera is interfaced to a microcomputer for data acquisition and processing. The laser and camera are synchronized with the crankshaft of the engine so that 2—D images of the liquid and vapor phase fuel distributions can be obtained at different times during the engine cycle. Results are presented at 600, 1200 and 1800 rpm, and from the beginning to just after the end of injection. The liquid fuel traverses the cylinder in a straight line in the form of a narrow cone, but does not reach the far wall in the plane of the laser sheet.
Technical Paper

2005 Ford GT Magnesium Instrument Panel Cross Car Beam

2005-04-11
2005-01-0341
Ford GT 2005 vehicle was designed for performance, timing, cost, and styling to preserve Ford GT40 vintage look. In this vehicle program, many advanced manufacturing processes and light materials were deployed including aluminum and magnesium. This paper briefly explains one unique design concept for a Ford GT instrument panel comprised of a structural magnesium cross-car beam and other components, i.e. radio box and console top, which is believed to be the industry's first structural I/P from vehicle crash load and path perspectives. The magnesium I/P design criteria include magnesium casting properties, cost, corrosion protection, crashworthiness assessments, noise vibration harshness performance, and durability. Magnesium die casting requirements include high pressure die cast process with low casting porosity and sound quality, casting dimensional stability, corrosion protection and coating strategy, joining and assembly constraints.
Technical Paper

2006 Chevrolet Corvette Z06 Aluminum Spaceframe

2005-04-11
2005-01-0465
This paper describes the engineering, manufacturing and integration necessary to produce the Corvette's first ever all-aluminum spaceframe (see Figure 1). The engineering and manufacturing of the spaceframe was a joint venture between General Motors and suppliers ALCOA (Aluminum Company of America) and Dana Corporation. ALCOA led the initial design of the spaceframe; Dana Corp led the manufacturing; General Motors' Engineering and Manufacturing groups led the integration of the assembly. The aluminum spaceframe design is modeled after the baseline steel structure of the Corvette coupe. The aluminum spaceframe reduces 140 lbs from the steel baseline and enters the plant at 285 lbs. This frame allows the 2006 Corvette Z06 to enter the market at a 3100 lbs curb weight. Aluminum casting, extruding, stamping, hydroforming, laser welding, Metal Inert Gas (MIG) welding, Self Pierce Riveting (SPR), and full spaceframe machining make up the main technologies used to produce this spaceframe.
Technical Paper

2006 Chevrolet Corvette Z06 Aluminum Spaceframe Design and Engineering Technology

2005-04-11
2005-01-0466
The General Motors (GM) Corvette design team was challenged with providing a C6 Z06 vehicle spaceframe that maintained the structural performance of its C5 predecessor while reducing mass by at least 56 kg. An additional requirement inherent to the project was that the design must be integrated into the C6 assembly processes with minimal disruption, i.e. seamless integration. In response to this challenge, a collaborative team was formed, consisting of design engineers from General Motors, Alcoa and Dana Corporation. The result of this collaborative effort is an aluminum Z06 spaceframe that satisfies the high performance expectations of the vehicle while reducing the mass by approximately 62 kg. The frame consists of aluminum extrusions, castings and sheets joined by MIG welding, laser welding and self-piercing rivets. The extrusions are 6XXX series alloys, the castings are permanent mold A356 while the sheet panels are formed from the 5XXX series of alloys.
Technical Paper

2006 Corvette Z06 Carbon Fiber Structural Composite Panels- Design, Manufacturing and Material Development Considerations

2005-04-11
2005-01-0469
The General Motors Corvette Product Engineering Team is in a continual search for mass-reduction technologies which provide performance improvements that are affordable and add value for their customers. The structural composite panels of the C6 Z06 provided a unique opportunity to extend the use of carbon fiber reinforced materials to reduce mass and enhance performance. The entire vehicle set of composite panels was reviewed as candidates for material substitution, with the selection criteria based on the cost per kg of mass saved, tooling cost required, and the location of the mass to be saved. Priority was extended to mass savings at the front of the vehicle. After a carefully balanced selection process, two components, both requiring redesign because of the Z06’s wider stance, met the criteria: the Front Wheelhouse Outer Panel and Floor Panels. The current Floor Panels, first used on the C5, are large and are a balsawood-cored glass fiber reinforced composite design.
Technical Paper

2D Finite Element Simulation of Sheet Metal Forming Processes

1999-03-01
1999-01-1004
A 2D finite element program, known as FAST_FORM2D, was developed at FTI to carry out section analysis in die design. Incremental method is employed and plane strain condition is assumed for 2D sections. Contact behavior and friction force are simulated by a developed algorithm. Therefore, the divergence problems related to the conventional contact techniques can be reduced or avoided. An adaptive mesh generation scheme is implemented to achieve computation efficiency. With the code, it is possible to evaluate tension, strain, thickness distributions and punch force at different stages for any 2D section cut from 3D panels. User can easily input or modify forming conditions to get the best solution.
Technical Paper

3-Dimensional Description of Sheet Metal Surfaces

1995-02-01
950918
During sheet metal forming processes, the friction conditions have a decisive influence on forming limits, the robustness of the production process and the quality of the parts produced, with significant forces required to overcome friction between the sheet and the tools. If lot-to-lot reproducibility is to be guaranteed, an appropriate method of characterizing the sheet surface topography is needed to monitor the sheet metal fabrication process. Newly developed optical measurement techniques and computer workstation technology are presented which enable the topography of sheet surfaces to be described in three dimensions.
Technical Paper

3D Beam Forming Measurements Using 3D-Microphone Arrays

2009-01-21
2009-26-0050
Traditional acoustic measurements inside any cavity have historically been conducted with a small number of microphones. By this means it is possible to gain information about parameters like frequencies, orders and sound pressures. However, a space-selective analysis is nearly impossible and it is not feasible to find the position of the sound sources in space in a practical way. While traditional beam forming systems with planar microphone arrays have enlarged the possibilities of acoustic measurements, they do not give comprehensive information about the sound sources in the entire vehicle interior. Therefore, the components of the Acoustic Camera of the GFal were extended by a spherical, acoustically transparent and omni-directional array. A new option is to map onto a common 3D-CAD-model of the object of interest, for instance a vehicle interior. The advantages and disadvantages of 2D- and 3D-mappings will be discussed in the paper.
Technical Paper

3D Computational Methodology for Bleed Air Ice Protection System Parametric Analysis

2015-06-15
2015-01-2109
A 3D computer model named AIPAC (Aircraft Ice Protection Analysis Code) suitable for thermal ice protection system parametric studies has been developed. It was derived from HASPAC, which is a 2D anti-icing model developed at Wichita State University in 2010. AIPAC is based on the finite volumes method and, similarly to HASPAC, combines a commercial Navier-Stokes flow solver with a Messinger model based thermodynamic analysis that applies internal and external flow heat transfer coefficients, pressure distribution, wall shear stress and water catch to compute wing leading edge skin temperatures, thin water flow distribution, and the location, extent and rate of icing. In addition, AIPAC was built using a transient formulation for the airfoil wall and with the capability of extruding a 3D surface grid into a volumetric grid so that a layer of ice can be added to the computational domain.
Technical Paper

3rd Generation AHSS Virtual and Physical Stamping Evaluation

2020-04-14
2020-01-0757
Developing lightweight, stiff and crash-resistant vehicle body structures requires a balance between part geometry and material properties. High strength materials suitable for crash resistance impose geometry limitations on depth of draw, radii and wall angles that reduce geometric efficiency. The introduction of 3rd generation Advanced High Strength Steels (AHSS) can potentially change the relationship between strength and geometry and enable simultaneous improvements in both. This paper will demonstrate applicability of 3rd generation AHSS with higher strength and ductility to replace the 780 MPa Dual Phase steel in a sill reinforcement on the current Jeep Cherokee. The focus will be on formability, beginning with virtual simulation and continuing through a demonstration run on the current production stamping tools and press.
Technical Paper

4000 F Oxidation Resistant Thermal Protection Materials

1966-02-01
660659
Coated refractory metals, coated and alloyed graphites, hafnium-tantalum alloys, refractory borides, and stabilized zirconias are considered for the 3600–4000 F high-velocity air environment. Only refractory borides and stabilized zirconias are indicated as offering long duration and reuse capabilities for such high-temperature utilization. Iridium, as coatings on substrates of either graphites or refractory metals, appears attractive for shorter times (less than 1 hr). Environmental evaluation and the need for a theoretical framework to enable the prediction of performance data for such materials are indicated to be major problems facing users and suppliers.
Technical Paper

47 Development of a Titanium Material by Utilizing Off-Grade Titanium Sponge

2002-10-29
2002-32-1816
Titanium alloy for forging and pure titanium material for exhaust systems have been developed. The forging alloy will be applied to production of lightweight motorcycle frames and the pure titanium will be applied to improve engine performance. The materials have been made inexpensive by the use of off-grade sponge that includes many impurities for production of titanium ingot. Stable characteristics have been obtained by controlling oxygen equivalent after setting the volume of tolerable impurities by considering mechanical properties and production engineering. In spite of low-cost, the material provides the same design strength compared to conventional material, and enables parts production with existing equipment. A review of manufacturing and surface treatment processes indicated a reduction in the price of titanium parts produced with this new material.
X