Refine Your Search




Search Results

Technical Paper

(Ce, Zr)O2 Solid Solutions for Three-Way Catalysts

It has been recently shown that (Ce, Zr)O2 mixed oxides provide improved catalytic performances compared to pure CeO2. Cerium oxide is the active Oxygen Storage Capacity (OSC) component in three way catalysts. However, higher performances, including OSC enhancement, can be achieved with thermally stable solid solutions of Ce and Zr oxides. In the present paper, we describe the structure and the advantages of Ce rich (Ce, Zr)O2 solid solutions and the improved catalytic properties of these materials when used in association with platinum. Various analytical techniques were used including thermo-reduction methods, OSC measurements, surface area measurements, XRD, HRTEM, XPS, and XANES/EXAFS.
Technical Paper

100 HP / 200 Nm Diesel Motorcycle with 6 Speed Automated Manual Transmission

Diesel engines, especially CR (Common Rail) DI (Direct Injection) TCI (Turbo Charged Inter-cooled), share a wide acceptance in the passenger car market due to the enormous torque and flexibility at low engine speed. A pre - condition for the use of a diesel engine in a motorcycle is that the disadvantages like combustion noise and visible smoke are reduced or eliminated. Moreover the fuel economy and performance characteristics of a diesel engine are dedicated to be used in a touring or large displacement motorcycle. The AVL engine concept is the first high performance diesel engine to be specially designed for motorcycles in terms of packaging and styling. To compensate for the limited engine speed range a gearbox with a wide ratio spread is required. This leads to a manual transmission with at least 6 gears or an automatic transmission. For the AVL concept an AMT (Automated Manual Transmission) was selected.
Technical Paper

180 Cu Yd Stripping Shovel

Because of the size and weight of the various components going into the machine, new approaches were used to solve the practical limitations of manufacturing facilities, shipping clearances, and erection procedures. Although the general appearance of the machine is similar to previous units, there are a number of new design features incorporated in the unit. This paper will be limited to the major design considerations as follows: adaption to stripping two seams of coal simultaneously; dipper with two doors; computerized hydraulic steering maintaining Ackerman correction; double end drive crawlers and belt tensioning; and electrical innovations.
Technical Paper

1996 GM 7.4 Liter Engine Upgrade

General Motors Powertrain Division has developed the next generation big block V8 engine for introduction in the 1996 model year. In addition to meeting tighter emission and on-board diagnostic legislation, this engine evolved to meet both customer requirements and competitive challenges. Starting with the proven dependability of the time tested big block V8, goals were set to substantially increase the power, torque, fuel economy and overall pleaseability of GM's large load capacity gasoline engine. The need for this new engine to meet packaging requirements in many vehicle platforms, both truck and OEM, as well as a requirement for minimal additional heat rejection over the engine being replaced, placed additional constraints on the design.
Technical Paper


General Motors Powertrain Group (GMPTG) has developed an all new small block V8 engine, designated LS1, for introduction into the 1997 Corvette. This engine was designed to meet both customer requirements and competitive challenges while also meeting the ever increasing legislated requirements of emissions and fuel economy. This 5.7L V8 provides increased power and torque while delivering higher fuel economy. In addition, improvements in both QRD and NVH characteristics were made while meeting packaging constraints and achieving significant mass reductions.
Technical Paper

1D Model of a Copper Exchanged Small Pore Zeolite Catalyst Based on Transient SCR Protocol

Urea-selective catalytic reduction (SCR) catalysts are the leading aftertreatment technology for diesel engines, but there are major challenges associated with meeting future NOx emission standards, especially under transient drive cycle conditions that include large swings in exhaust temperatures. Here we present a simplified, transient, one-dimensional integral model of NOx reduction by NH₃ on a commercial small-pore Cu-zeolite urea-SCR catalyst for which detailed kinetic parameters have not been published. The model was developed and validated using data acquired from bench reactor experiments on a monolith core, following a transient SCR reactor protocol. The protocol incorporates NH₃ storage, NH₃ oxidation, NO oxidation and three global SCR reactions under isothermal conditions, at three space velocities and at three NH₃/NOx ratios.
Journal Article

1D Thermo-Fluid Dynamic Modeling of Reacting Flows inside Three-Way Catalytic Converters

In this work a detailed model to simulate the transient behavior of catalytic converters is presented. The model is able to predict the unsteady and reacting flows in the exhaust ducts, by solving the system of conservation equations of mass, momentum, energy and transport of reacting chemical species. The en-gine and the intake system have not been included in the simulation, imposing the measured values of mass flow, gas temperature and chemical composition as a boundary condition at the inlet of the exhaust system. A detailed analysis of the diffusion stage triggering is proposed along with simplifications of the physics, finalized to the reduction of the calculation time. Submodels for water condensation and its following evaporation on the monolith surface have been taken into account as well as oxygen storage promoted by ceria oxides.
Technical Paper

2.5 D LED: A Cost Efficient Solution for 3 D Signaling Lamps

After the first appearance of LED rear lamps, which employed mainly two-dimensional arrays of LEDs, the request of stylists and OEMs to have three-dimensional LED alignment has increased strongly. Development of more powerful LEDs and new packaging and assembly technologies now allows for a three-dimensional assembly of the LEDs, giving an impression of depth and enabling the LEDs to follow even extreme curvatures. This gives great customer satisfaction in terms of styling, but the disadvantage is that the cost for the three-dimensional LED alignment increases significantly. To counteract this development, we have developed a light guide technology approach (so-called 2.5 D) to combine a cost efficient LED assembly process with the flexibility of a 3 D arrangement of the light sources. Thus, we can use standard planar FR4 (Flame Resistant 4) LED printed circuit boards with arbitrary LEDs and do not depend on a certain assembly technology.
Technical Paper

3D Numerical Study of Sloshing Attenuation Using Vertical Slotted Barriers

The present study deals with the reduction of fluid vibrations by dissipating the kinetic energy in a closed vibrating container partly filled using vertical slotted obstacles. The effect of the barriers on the liquid vibration inside a closed container exposed to a harmonic excitation is numerically studied. A single vertical slotted barrier (SVSB) and multivertical slotted barrier (MVSB) systems are considered for different liquid levels. The 3D liquid domain with the tank and the barrier as boundaries is modelled and solved numerically using ANSYS-CFX software. The reduction in pressures on the walls and the ceiling of the tank due to the influences of the slot size and numbers were evaluated to optimize the size and the numbers of the slots. The numerical approach shows an ability to simulate the nonlinear behavior of the liquid vibration when using vertical slotted barriers (VSB).
Technical Paper

42 V Electric Air Conditioning Systems (E-A/CS) for Low Emissions, Architecture, Comfort and Safety of Next Generation Vehicles

Electrical Air Conditioning Systems for 42 V vehicles will provide many benefits in terms of Environment protection, car Architecture, cabin Comfort and overall Safety. E-A/C Systems essentially differ from conventional ones by the use of electrical compressors. First of all, they will be particularly well adapted to new powertrains, helping to make them more environmentally friendly. Accurate control and high efficiency under the most common thermal conditions will reduce the A/C impact on fuel consumption. Besides, higher sealing integrity will cut emissions of refrigerant during normal operation and maintenance. Secondly, the use of an electrically driven compressor (EDC) will suppress a belt, and will reduce the packaging constraints. This will help to design new vehicle architectures. Thirdly, the electrification of air conditioning will allow better thermal comfort. In particular, E-A/C Systems provide a good opportunity for cabin pre-conditioning.
Technical Paper

A -183°C Cryogenic Freezer for the International Space Station

In the frame of the CRYOSYSTEM A-phase study financed by the European Space Agency, AIR LIQUIDE (France) and ORBITAL HYDRAULIC-BREMEN (Germany) have been studying a -183°C freezer to be used on-board the International Space Station for freezing and storing biological samples.
Technical Paper

A -183°C Cryogenic Freezer for the International Space Station

In the course of CRYOSYSTEM phase B (development phase) financed by the European Space Agency, AIR LIQUIDE (France) and Astrium Space Infrastructure (Germany) have developed an optimized design of a −183°C freezer to be used on board the International Space Station for the freezing and storage of biological samples. The CRYOSYSTEM facility consists of the following main elements: - the CRYORACK, an outfitted standard payload rack (ISPR) accommodating up to three identical Vial Freezers - the Vial Freezer, a dewar vessel capable of fast and ultra-rapid freezing, and storing up to approximately 900 vials below −183°C; the dewar is cooled by a Stirling machine producing > 6 W at 90 K. The Vial Freezer is operational while accommodated in the CRYORACK or attached to the Life Science Glovebox (LSG). One CRYORACK will remain permanently on-orbit for several years while four Vial Freezers and two additional CRYORACKs support the cyclic upload/download of samples.
Journal Article

A Batch Blending System for Continuous Production of Multi-Component Fuel Blends for Engine Laboratory Tests

The increased rates of research on complex fuel blends in engine applications poses a need for more efficient and accurate fuel blending processes in engine laboratories. Making the fuel blending process automatic, effective, accurate and flexible saves time, storage space and cost without compromising the tests of future fuel alternatives. To meet these requirements, an automatic fuel blending system, following a sequential batch process, was designed and tested for engine laboratory application. The fuel blending system was evaluated in terms of functionality, safety, accuracy and repeatability. The functionality and safety was evaluated through a risk analysis. Whereas, the accuracy and repeatability of the system was investigated through blend preparation tests. The results show that the minimum fuel mass limitation of the system is 0.5 kg. This allows for blends with fuel ratios as low as 7 vol-% to be prepared by the system.
Technical Paper

A Canopy Model for Plant Growth Within a Growth Chamber: Mass and Radiation Balance for the Above Ground Portion

As humans move into outer space, need for air, clean water and food require that green plants be grown within all planetary colonies. The complexities of ecosystems require a sophisticated understanding of the interactions between the atmosphere, all nutrients, and life forms. While many experiments must be done to find the relationships between mass flows and chemical/energy transformations, it seems necessary to develop generalized models to understand the limitations of plant growth. Therefore, it is critical to have a robust modelling capability to provide insight into potential problems as well as to direct efficient experimentation. Last year we reported on a simple leaf model which focused upon the mass transfer of gases, radiation/heat balances, and the production of photosynthetically produced carbohydrate. That model indicated some of the plant processes which had to be understood in order to obtain parameters specific for each species.
Technical Paper

A Capacity Oriented Quality Assurance Method by Using Modular Containerized Test Cells

The requirements for diesel and gasoline engines are continuously increasing with respect to emissions, fuel consumption and durability. Besides the engine development process the quality of the production engine itself has to be ensured. This paper discusses alternative philosophies and approaches in terms of the quality management process. Based on a detailed analysis of the required equipment advanced solutions are presented. Modular containerized test cells are described being equipped exactly to the current testing task ready to use in low infrastructure. The testing capacity of the facility can be adjusted to the actual production volume by simply removing or adding modular test cells. Thus, at every facility the testing tasks can be executed successfully and the investment can be kept low.
Technical Paper

A Combined 3D/Lumped Modeling Approach to Ammonia SCR After-treatment Systems: Application to Mixer Designs

In practical applications of ammonia SCR aftertreatment systems using urea as the reductant storage compound, one major difficulty is the often constrained packaging envelope. As a consequence, complete mixing of the urea solution into the exhaust gas stream as well as uniform flow and reductant distribution profiles across the catalyst inlet face are difficult to achieve. This paper discusses a modeling approach, where a combination of 3D CFD and a lumped parameter SCR model enables the prediction of system performance, even with non-uniform exhaust flow and ammonia distribution profiles. From the urea injection nozzle to SCR catalyst exit, each step in the modeling process is described and validated individually. Finally the modeling approach was applied to a design study where the performance of a range of urea-exhaust gas mixing sections was evaluated.
Technical Paper

A Comparative Life Cycle Assessment of Magnesium Front End Autoparts: A Revision to 2010-01-0275

The Magnesium Front End Research and Development (MFERD) project under the sponsorship of Canada, China, and USA aims to develop key technologies and a knowledge base for increased use of magnesium in automobiles. The primary goal of this life cycle assessment (LCA) study is to compare the energy and potential environmental impacts of advanced magnesium based front end parts of a North American-built 2007 GM-Cadillac CTS using the current steel structure as a baseline. An aluminium front end is also considered as an alternate light structure scenario. A “cradle-to-grave” LCA is conducted by including primary material production, semi-fabrication production, autoparts manufacturing and assembly, transportation, use phase, and end-of-life processing of autoparts. This LCA study was done in compliance with international standards ISO 14040:2006 [1] and ISO 14044:2006 [2].
Technical Paper

A Comprehensive Data Generation Facility for Internal Combustion Engine Evaluation and Development

A super-microcomputer is utilized in an engine-dynamometer facility to create a comprehensive engine evaluation system. A unique feature of this system is the combination of experimental and modelling activities in evaluating engine designs. The system acquires engine operating conditions, emissions, and dynamic cylinder and manifold pressures via the data acquisition interface. After acquisition, the computer is also capable of providing engine model predictions from either an empirical model or a zero-dimensional thermodynamic model. The data gathering process is speed limited by the settling time of the engine-dynamometer system. The acquisition and modelling procedures are controlled by an internally developed, menu driven, software package. Features of the system include commercial relational database software for rapid storage and retrieval of acquired data and a high resolution graphics monitor for immediate display of analyzed pressure data.
Technical Paper

A Computer Technique to Evaluate Routing of Fluid System Plumbing for Aircraft Engines

In the design of fluid systems plumbing for aircraft engines, the designer is continually challenged by the problem of component location and routing. In order to achieve accessibility and maintainability, and to avoid physical interferences, plumbing design is accomplished through extensive graphical projection and mockups. The solution to this problem must also satisfy tubing stress limits, resonant frequencies, bracket or clamping positions available and future space requirements. To facilitate and expedite this design procedure a digital computer technique has been developed which determines the clearances between tubing and other engine components. Though not a substitute for graphical projection, this program provides a means for accurate checking for interference. It also serves a valuable purpose in the storage of previous or alternate plumbing routing arrangements for comparison.
Technical Paper

A Connectorized Passive Optical Star for Automotive Networking Applications

This paper introduces for the first time a fully connectorized passive optical star for use with plastic optical fiber that addresses all automotive application requirements. A unique mixing element is presented that offers linear expandability, uniformity of insertion loss, and packaging flexibility. The star is constructed of all plastic molded components to make it low cost and produceable in high volume and is single-ended to facilitate vehicle integration. The star is connectorized to facilitate assembly into the vehicle power and signal distribution system.