Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

0D/1D Turbulent Combustion Model Assessment from an Ultra-Lean Spark Ignition Engine

2019-03-25
2019-01-1409
This paper focuses on an assessment of predictive combustion model using a 0D/1D simulation tool under high load, different excess air ratio λ , and different combustion stabilities (based on coefficient of variation of indicated mean effective pressure COVimep). To consider that, crank angle resolved data of experimental pressure of 500 cycles are recorded under engine speed 1000 RPM and 2000 RPM, wide-open throttle, and λ=1.0, 1.42, 1.7, and 2.0. Firstly, model calibration is conducted using 18 cases at 2000 RPM using 500 cycle-averaged in-cylinder pressure to find optimized model constants. Then, the model constants are unchanged for other cases. Next, different cycle-averaged pressure data are used as inputs in the simulation based on the COVimep for studying sensitivity of the turbulent model constants. The simulation is conducted using 1D simulation software GT-Power.
Technical Paper

0D/3D Simulations of Combustion in Gasoline Engines Operated with Multiple Spark Plug Technology

2015-04-14
2015-01-1243
A simulation method is presented for the analysis of combustion in spark ignition (SI) engines operated at elevated exhaust gas recirculation (EGR) level and employing multiple spark plug technology. The modeling is based on a zero-dimensional (0D) stochastic reactor model for SI engines (SI-SRM). The model is built on a probability density function (PDF) approach for turbulent reactive flows that enables for detailed chemistry consideration. Calculations were carried out for one, two, and three spark plugs. Capability of the SI-SRM to simulate engines with multiple spark plug (multiple ignitions) systems has been verified by comparison to the results from a three-dimensional (3D) computational fluid dynamics (CFD) model. Numerical simulations were carried for part load operating points with 12.5%, 20%, and 25% of EGR. At high load, the engine was operated at knock limit with 0%, and 20% of EGR and different inlet valve closure timing.
Technical Paper

1-D Model of Radial Turbocharger Turbine Calibrated by Experiments

2002-03-04
2002-01-0377
The 1-D model of a radial centripetal turbine was developed for engine simulation to generalize and extrapolate the results of experiments to high pressure ratio or off-design velocity ratio using calibrated tuning coefficients. The model concerns a compressible dissipative flow in a rotating channel. It considers both bladed or vaneless turbine stators and a twin-entry stator for exhaust pulse manifolds. The experiments were used to find values of all model parameters (outlet flow angles, all loss coefficients including an impeller incidence loss) by an original method using repeated regression analysis. The model is suitable for the prediction of a turbocharger turbine operation and its optimization in 1-D simulation codes.
Technical Paper

1-D Modeling and Experimental Evaluation of Secondary Air Injection System for a Small SI Engine

2013-10-15
2013-32-9091
In order to comply with the existing emission norms of BSIII in India or EURO III and beyond that also, it is not sufficient to use the catalytic converter technology alone over the wide range of engine operating maps. Different studies across the world have proved that the cost, drivability, operating range against AFR, heat dissipation rate characteristics of catalytic converter limit their use in startup and idling conditions. One common way to tackle this condition is to use the Secondary Air Injection (SAI) system. In this system, small amount of air is injected after the exhaust port to initiate the thermal oxidation of gases. The right amount of air injected at the right time and at right location will reduce the emission by 37-90%. In the following study, SI engine vehicle with single cylinder, 160 cc and having carburetor is used as a test vehicle to evaluate the performance of SAI. The SAI system is modeled in AVL BOOST software and validated against the experimental data.
Technical Paper

1-D Numerical Model of a Spark Ignition Engine Fueled with Methanol for Off-Grid Charging Stations

2023-08-28
2023-24-0098
The road transportation sector is undergoing significant changes, and new green scenarios for sustainable mobility are being proposed. In this context, a diversification of the vehicles’ propulsion, based on electric powertrains and/or alternative fuels and technological improvements of the electric vehicles charging stations, are necessary to reduce greenhouse gas emissions. The adoption of internal combustion engines operating with alternative fuels, like methanol, may represent a viable solution for overcoming the limitations of actual grid connected charging infrastructure, giving the possibility to realize off-grid charging stations. This work aims, therefore, at investigating this last aspect, by evaluating the performance of an internal combustion engine fueled with methanol for stationary applications, in order to fulfill the potential demand of an on off-grid charging station.
Technical Paper

1-D Simulation Model Developed for a General Purpose Engine

2016-11-08
2016-32-0030
In recent years, improvements in the fuel economy and exhaust emission performance of internal combustion engines have been increasingly required by regulatory agencies. One of the salient concerns regarding general purpose engines is the larger amount of CO emissions with which they are associated, compared with CO emissions from automobile engines. To reduce CO and other exhaust emissions while maintaining high fuel efficiency, the optimization of total engine system, including various design parameters, is essential. In the engine system optimization process, cycle simulation using 0-D and 1-D engine models are highly useful. To define an optimum design, the model used for the cycle simulation must be capable of predicting the effects of various parameters on the engine performance. In this study, a model for predicting the performance of a general purpose SI (Spark Ignited) engine is developed based on the commercially available engine simulation software, GT-POWER.
Journal Article

1-D Simulation Study of Divided Exhaust Period for a Highly Downsized Turbocharged SI Engine - Scavenge Valve Optimization

2014-04-01
2014-01-1656
Fuel efficiency and torque performance are two major challenges for highly downsized turbocharged engines. However, the inherent characteristics of the turbocharged SI engine such as negative PMEP, knock sensitivity and poor transient performance significantly limit its maximum potential. Conventional ways of improving the problems above normally concentrate solely on the engine side or turbocharger side leaving the exhaust manifold in between ignored. This paper investigates this neglected area by highlighting a novel means of gas exchange process. Divided Exhaust Period (DEP) is an alternative way of accomplishing the gas exchange process in turbocharged engines. The DEP concept engine features two exhaust valves but with separated function. The blow-down valve acts like a traditional turbocharged exhaust valve to evacuate the first portion of the exhaust gas to the turbine.
Technical Paper

100% LPG Long Haul Truck Conversion - Economy and Environmental Benefits

2012-09-24
2012-01-1983
Advanced Vehicle Technologies (AVT), a Ballarat Australia based company, has developed the World's first diesel to 100% LPG conversion for heavy haul trucks. There is no diesel required or utilized on the trucks. The engine is converted with minimal changes into a spark ignition engine with equivalent power and torque of the diesel. The patented technology is now deployed in 2 Mercedes Actros trucks. The power output in engine dynamometer testing exceeds that of the diesel (in excess of 370 kW power and 2700 Nm torque). In on-road application the power curve is matched to the diesel specifications to avoid potential downstream power-train stress. Testing at the Department of Transport Energy & Infrastructure, Regency Park, SA have shown the Euro 3 truck converted to LPG is between Euro 4 and Euro 5 NOx levels, CO2 levels 10% better than diesel on DT80 test and about even with diesel on CUEDC tests.
Technical Paper

125cc Small Engine Fuel Injection System with Low Emissions Solutions

2004-09-27
2004-32-0094
In many countries of the world, carburetor motorcycles are the major transportation system for people. The large volumes of these motorcycles contribute to high levels of urban emissions and this fact promotes the relevant emissions regulations to become more stringent. This paper presents an approach to satisfy various new emissions regulations such as Euro-III and Taiwan 4th generation emissions regulations by optimizing the 4-stroke PFI (Port Fuel Injection) engine management system (EMS) and after-treatment system.
Technical Paper

15 Combustion Characteristics of an Improved Design of a Stratified Charge Spark Ignition Engine

2002-10-29
2002-32-1784
The characteristics of the combustion process in an improved design of a novel spark ignition engine studied by means of Computational Fluid Dynamics are presented. The engine is designed to work at low average combustion temperatures to achieve very low NOx emissions. The engine is a two-stroke, two piston in-line engine. The main combustion occurs in four combustion pre-chambers that have an annular shape with a nozzle on the side facing the cylinder. Fuel is directly injected into the pre-chambers by using high-pressure fuel injectors. A progressive burning process is expected to keep the flame inside the pre-chambers while the fast ejection of combustion products should produce effective mixing with the cold air in the cylinder. This fast dilution should guarantee a temperature drop of the combustion products thus reducing the formation of NOx via a thermal path.
Technical Paper

1989 Suzuki Sidekick/Geo Tracker Body structure Analysis

1989-11-01
892536
This paper presents a summary of body structural analysis applied to the 1989 Suzuki Sidekick/Geo Tracker at various stages of development and design. The structure analysis techniques were applied previously to rigidity, vibration, strength, crashworthiness and optimization. The studies confirm that the CAE technique for body structure analysis is more beneficial if it is utilized in the earlier structure development stages particularly for vibration and crashworthiness. Through the extensive use of the structural analysis technique in conjunction with the experiment, the design concept of the Sidekick/Tracker body has been optimized to a most extent.
Technical Paper

1D Modeling of a High-Performance Engine Fueled with H2 And Equipped with A Low NOx Aftertreatment Device

2024-06-12
2024-37-0009
Hydrogen engines are currently considered as a viable solution to preserve the internal combustion engine as a power unit for vehicle propulsion. In particular, lean-burn gasoline Spark-Ignition (SI) engines have been a major subject of investigations due to the reduced emission levels and high thermodynamic efficiency. This strategy is suitable for the purpose of passenger car applications and cannot be tailored in the field of high performance engine, where the air mass delivered would require oversized turbocharging systems or more complex charging solutions. For this reason, the range of stoichiometric feeding condition is explored in the high performance engine, leading to the consequent issue of abatement of pollutant emissions. In this work a 1D model will be applied to the modeling of a V8 engine fueled with DI of hydrogen. The engine has been derived by a gasoline configuration and adapted to hydrogen in such a way to keep the same performance.
Technical Paper

1D Simulation of Turbocharged Gasoline Direct Injection Engine for Transient Strategy Optimization

2005-04-11
2005-01-0693
This paper presents 1D engine simulation used for engine control strategy optimization for a twin-scroll turbocharged gasoline direct injection 2.0 L engine with twin camphaser. The results show good agreement of the engine model behavior with testbed acquisitions for a large amount of steady state set points and under transient operating conditions. The presented method demonstrates that a 1D engine code represents a useful and efficient tool during all steps of the engine control development process from design to real-time for such an advanced engine technology.
Technical Paper

1D Tire Model Parameter Synthesis for Vehicle Handling Targets Assessment “A Strategy of Optimization and Evaluation of Tire Math’s”

2019-01-09
2019-26-0361
Handling performance of a vehicle is a key characteristic determining the response of vehicle under different operating scenarios. An insight into these vehicle-handling characteristics at early stage can be extremely useful in the design and development process. Tire characterization and tuning is important and mandatory to scrutinize each functional and individual parameter of tire. Tire force and moment data is having a significant effect in vehicle handling. Segregation of tire parameter, which is contributing vehicle-handling performance, helps to identify and perform optimization for improvisation. The main objective of this study is development and integration optimized 1D tire model into multibody dynamics model of the vehicle to observe various vehicle compliances towards its handling performance target.
Technical Paper

1D and 3D CFD Investigation of Burning Process and Knock Occurrence in a Gasoline or CNG fuelled Two-Stroke SI Engine

2011-11-08
2011-32-0526
The paper presents a combined experimental and numerical investigation of a small unit displacement two-stroke SI engine operated with gasoline and Natural Gas (CNG). A detailed multi-cycle 3D-CFD analysis of the scavenging process is at first performed in order to accurately characterize the engine behavior in terms of scavenging patterns and efficiency. Detailed CFD analyses are used to accurately model the complex set of physical and chemical processes and to properly estimate the fluid-dynamic behavior of the engine, where boundary conditions are provided by a in-house developed 1D model of the whole engine. It is in fact widely recognized that for two-stroke crankcase scavenged, carbureted engines the scavenging patterns (fuel short-circuiting, residual gas distribution, pointwise lambda field, etc.) plays a fundamental role on both of engine performance and tailpipe emissions.
Technical Paper

1D-3D Analysis of the Scavenging and Combustion Process in a Gasoline and Natural-Gas Fuelled Two-Stroke Engine

2008-04-14
2008-01-1087
The paper presents a 1D-3D numerical model to simulate the scavenging and combustion processes in a small-size spark-ignition two-stroke engine. The engine is crankcase scavenged and can be operated with both gasoline and Natural Gas (NG). The analysis is performed with a modified version of the KIVA3V code, coupled to an in-house developed 1D model. A time-step based, two-way coupled procedure is fully described and validated against a reference test. Then, a 1D-3D simulation of the whole two-stroke engine is carried out in different operating conditions, for both gasoline and NG fuelling. Results are compared with experimental data including instantaneous pressure signals in the crankcase, in the cylinder and in the exhaust pipe. The procedure allows to characterize the scavenging process and quantify the fresh mixture short-circuiting, as well as to analyze the development of the NG combustion process for a diluted mixture, typically occurring in a two-stroke engine.
Technical Paper

2-D Temperature Measurements of Unburned Gas Mixture in an Engine by Two-line Excitation LIF Technique

2006-10-16
2006-01-3336
Two-line excitation LIF (Laser-Induced Fluorescence) technique for 2-dimensional temperature measurements in an engine cylinder before ignition is presented. From the fundamental examinations, the combination of toluene tracer with a pair of excitation lines of 248nm and 266nm has been selected because of the high LIF intensity ratio and closer excitation wavelengths. In-cylinder thermometry is conducted using a visualized single cylinder spark ignition engine both in PFI (port-fuel-injection) and DI (direct-injection) operation. The accuracy of this technique is determined through the homogeneous PFI experiment. Temperature and fuel distribution in unburned mixture are measured simultaneously in DI operation. It exists a strong correlation between equivalence ratio and temperature inside the mixture. Temperature in the fuel rich region is lower than in the fuel lean region.
Technical Paper

2-step Variable Valve Actuation: System Optimization and Integration on an SI Engine

2006-04-03
2006-01-0040
2-step variable valve actuation using early-intake valve closing is a strategy for high fuel economy on spark-ignited gasoline engines. Two discrete valve-lift profiles are used with continuously variable cam phasing. 2-step VVA systems are attractive because of their low cost/benefit, relative simplicity, and ease-of-packaging on new and existing engines. A 2-step VVA system was designed and integrated on a 4-valve-per-cylinder 4.2L line-6 engine. Simulation tools were used to develop valve lift profiles for high fuel economy and low NOx emissions. The intake lift profiles had equal lift for both valves and were designed for high airflow & residual capacity in order to minimize valvetrain switching during the EPA drive cycle. It was determined that an enhanced combustion system was needed to maximize fuel economy benefit with the selected valve lift profiles. A flow-efficient chamber mask was developed to increase in-cylinder tumble motion and combustion rates.
Technical Paper

2006 Chevrolet Corvette Z06 Aluminum Spaceframe Design and Engineering Technology

2005-04-11
2005-01-0466
The General Motors (GM) Corvette design team was challenged with providing a C6 Z06 vehicle spaceframe that maintained the structural performance of its C5 predecessor while reducing mass by at least 56 kg. An additional requirement inherent to the project was that the design must be integrated into the C6 assembly processes with minimal disruption, i.e. seamless integration. In response to this challenge, a collaborative team was formed, consisting of design engineers from General Motors, Alcoa and Dana Corporation. The result of this collaborative effort is an aluminum Z06 spaceframe that satisfies the high performance expectations of the vehicle while reducing the mass by approximately 62 kg. The frame consists of aluminum extrusions, castings and sheets joined by MIG welding, laser welding and self-piercing rivets. The extrusions are 6XXX series alloys, the castings are permanent mold A356 while the sheet panels are formed from the 5XXX series of alloys.
Technical Paper

2006 Corvette Z06 Carbon Fiber Fender- Engineering, Design, and Material Selection Considerations

2005-04-11
2005-01-0468
General Motor's Corvette product engineering was given the challenge to find mass reduction opportunities on the painted body panels of the C6 Z06 through the utilization of carbon fiber reinforced composites (CFRC). The successful implementation of a carbon fiber hood on the 2004 C5 Commemorative Edition Z06 Corvette was the springboard for Corvette Team's appetite for a more extensive application of CFRC on the C6 Z06 model. Fenders were identified as the best application for the technology given their location on the front of the vehicle and the amount of mass saved. The C6 Z06 CFRC fenders provide 6kg reduction of vehicle mass as compared to the smaller RRIM fenders used on the Coupe and Convertible models.
X