Refine Your Search




Search Results

Technical Paper

(Particle) Emissions of Small 2-& 4-Stroke Scooters with (Hydrous) Ethanol Blends

The objectives of the present work are to investigate the regulated and unregulated (particle) emissions of a classical and modern 2-stroke and a typical 4-stroke scooter with different ethanol blend fuels. There is also comparison of two different ethanol fuels: pure ethanol (E) *) and hydrous ethanol (EH) which contains 3.9% water and is denatured with 1.5% gasoline. Special attention is paid in this research to the hydrous ethanol, since the production costs of hydrous ethanol are much less than those for (dry) ethanol. The vehicles are with carburettor and without catalyst, which represents the most frequent technology in Eastern Asia and offers the information of engine-out emissions. Exhaust emissions measurements have been performed with fuels containing ethanol (E), or hydrous ethanol (EH) in the portion of 5, 10, 15 and 20% by volume. During the test systematical analysis of particle mass (PM) and nano-particles counts (NP) were carried out.
Technical Paper

1980 CRC Fuel Rating Program - The Effects of Heavy Aromatics and Ethanol on Gasoline Road Octane Ratings

A gasoline Road Octane study was conducted by the Coordinating Research Council (CRC) to evaluate the effects of heavy aromatics (C9 and heavier) and ethanol content on Road Octane performance independent of Research Octane Number (RON) and Motor Octane Number (MON). Maximum-throttle and part-throttle Road ON’s were found to be well predicted by equations containing only RON and MON terms. Heavier aromatics were found to have a small adverse effect on both maximum-throttle and part-throttle Road ON independent of its direct effects on RON and MON. The all-car data did not show a significant ethanol-content effect, but eight of the thirty-seven cars did show significant effects for ethanol content.
Technical Paper

2-Stroke CAI Operation on a Poppet Valve DI Engine Fuelled with Gasoline and its Blends with Ethanol

Controlled Auto Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), is one of the most promising combustion technologies to reduce the fuel consumption and NOx emissions. Currently, CAI combustion is constrained at part load operation conditions because of misfire at low load and knocking combustion at high load, and the lack of effective means to control the combustion process. Extending its operating range including high load boundary towards full load and low load boundary towards idle in order to allow the CAI engine to meet the demand of whole vehicle driving cycles, has become one of the key issues facing the industrialisation of CAI/HCCI technology. Furthermore, this combustion mode should be compatible with different fuels, and can switch back to conventional spark ignition operation when necessary. In this paper, the CAI operation is demonstrated on a 2-stroke gasoline direct injection (GDI) engine equipped with a poppet valve train.
Technical Paper

3D Numerical Characterization of a Multi-Holes Injector in a Quiescent Vessel and Its Application in a Single-Cylinder Research Engine Using Ethanol

The fuel injection in internal combustion engines plays a crucial role in the mixture formation, combustion process and pollutants' emission. Its correct modeling is fundamental to the prediction of an engine performance through a computational fluid dynamics simulation. In the first part of this work a tridimensional numerical simulation of a multi-hole’s injector, using ethanol as fuel, is presented. The numerical simulation results were compared to experimental data from a fuel spray injection bench test in a quiescent vessel. The break up model applied to the simulation was the combined Kelvin-Helmholtz Rayleigh-Taylor, and a sensitivity analysis of the liquid fuel penetration curve, as well on the overall spray shape was performed according to the model constants. Experimental spray images were used to aid the model tuning. The final configuration of the KH-RT model constants that showed best agreement with the measured spray was C3 equal to 0.5, B1, 7 and Cb, 0.
Technical Paper

A 322,000 kilometer (200,000 mile) Over the Road Test with HySEE Biodiesel in a Heavy Duty Truck

In July 1997, the Pacific Northwest and Alaska Regional Bioenergy Program, in cooperation with several industrial and institutional partners initiated a long-haul 322,000 km (200,000 mile) operational demonstration using a biodiesel and diesel fuel blend in a 324 kW (435 HP), Caterpillar 3406E Engine, and a Kenworth Class 8 heavy duty truck. This project was designed to: develop definitive biodiesel performance information, collect emissions data for both regulated and non-regulated compounds including mutagenic activity, and collect heavy-duty operational engine performance and durability information. To assess long-term engine durability and wear; including injector, valve and port deposit formations; the engine was dismantled for inspection and evaluation at the conclusion of the demonstration. The fuel used was a 50% blend of biodiesel produced from used cooking oil (hydrogenated soy ethyl ester) and 50% 2-D petroleum diesel.
Technical Paper

A Case Study for Life Cycle Assessment (LCA) as an Energy Decision Making Tool: The Production of Fuel Ethanol from Various Feedstocks

Life Cycle Analysis (LCA) considers the key environmental impacts for the entire life cycle of alternative products or processes in order to select the best alternative. An ideal LCA would be an expensive and time consuming process because any product or process typically involves many interacting systems and a considerable amount of data must be analysed for each system. Practical LCA methods approximate the results of an ideal analysis by setting limited analysis boundaries and by accepting some uncertainty in the data values for the systems considered. However, there is no consensus in the LCA field on the correct method of selecting boundaries or on the treatment of data set uncertainty. This paper demonstrates a new method of selecting system boundaries for LCA studies and presents a brief discussion on applying Monte Carlo Analysis to treat the uncertainty questions in LCA.
Technical Paper

A Compact 10 kW Electric Power Range Extender Suitable for Plug-In and Series Hybrid Vehicles

The paper discusses the concept, specification and overall performance of a 10 kW electric power range extender suitable for electric plug-in and series hybrid vehicles, based on a single cylinder, high speed, four stroke internal combustion engine, tested and developed at Istituto Motori CNR of Italy. This unit has been conceived from the beginning as a compact on board recharging system for the mentioned kind of means, and especially for city cars and small commercial vehicles. The paper starts by defining some characteristics, advantages and drawbacks of an electric city car, followed by the criteria adopted to characterize the nominal power of the range extender. Then, the ratio which leaded to the adoption of a single cylinder internal combustion engine is discussed, followed by an explanation of the main design characteristics of the whole unit.
Technical Paper

A Comparative Analysis of Direct Injection into a Pressurized Chamber Using an Automatic Image Treatment Methodology

A multi-hole direct injection injector was studied by means of image analysis. Methodologies based on an automatic process of cone angle measurement and edge detection were applied for the spray images generated by a 100 bar injection pressure discharged into a pressurized rigid chamber. A criterion based on pixel values was taken to localize the spray edges as angular coordinates and also with x and y position data. The high pixel values were associated with liquid phase while the low pixel values were associated to its absence. Computational codes written in MATLAB environment were used to analyze the numerical matrices associated to the images. Using the written MATLAB codes, a comparison of the effect of atmospheric back pressure, inside the chamber, on the spray pattern, cone angle and spray penetration were evaluated. The chamber was pressurized with 2.5, 5.0, 7.5 and 10 bar of back pressure. The tested fluid injected was EXXSOL D60 for simulating ethanol fuel behavior.
Technical Paper

A Comparative Analysis of Ethanol Versus Gasoline as a Fuel in Production Four-Stroke Cycle Automotive Engines

This paper presents the findings of a study that compared the fuel efficiency, power, emissions, engine wear and material compatability characteristics of automotive four-stroke cycle engines fueled by E95 (95 % ethyl alcohol and 5% lead free regular gasoline) and 87 pump octane number lead-free gasoline. A group of six senior Automotive Engineering Technology students, conducted the research over a one-year period. Two Mankato State University faculty served as directors for the project. The laboratory facilities at Mankato State University were used for vehicle modification and testing. Two identically equipped 1994 Geo Metros with 1.0 liter, three cylinder, throttle body fuel injected engines were used for this study. After a 6440 km (4000 mile) break-in period, to assure the cars performance characteristics were equal, one of the vehicles was converted to run on E95.
Technical Paper

A Comparative Analysis on the Spray Penetration of Ethanol, Gasoline and Iso-Octane Fuel in a Spark-Ignition Direct-Injection Engine

This study aims to clarify the spray development of ethanol, gasoline and iso-octane fuel, delivered by a multi-hole injector and spark-ignition direct-injection (SIDI) fuelling system. The focus is on how fuel properties impact temporal and spatial evolution of sprays at realistic ambient conditions. Two optical facilities were used: (1) a constant-flow spray chamber simulating cold-start conditions and (2) a single-cylinder SIDI engine running at normal, warmed-up operating conditions. In these optical facilities, high-speed Mie-scattering imaging is performed to measure penetrations of spray plumes at various injection pressures of 4, 7, 11 and 15 MPa. The results show that the effect of fuel type on the tip penetration length of the sprays depends on the injection conditions and the level of fuel jet atomisation and droplet breakup.
Technical Paper

A Comparative Assessment of Current Gasohol Fuel Economy Data

The use of ethyl alcohol as a motor fuel blending agent has been promoted as method for reducing the consumption of petroleum. A mixture of 90 volume percent unleaded regular gasoline and 10 volume percent anhydrous ethyl alcohol, popularly known as “Gasohol,” has probably received the most current interest. This report is a summary and analysis of all currently available comparative Gasohol fuel consumption data. Usable data were eventually obtained from sixteen (16) different Gasohol test programs conducted by various public and private organizations. Ten (10) of these programs were conducted with chassis dynamometers, and the remaining six (6) were road tests of varying duration. Data from each or the test programs were subjected to a statistical analysis to determine whether the results were significant. Finally, all of the data were combined in order to determine an overall mean Gasohol fuel economy effect.
Technical Paper

A Comparative Study of the Ignition and Combustion Properties of Ethanol-Indolene Blends During HCCI Operation of a Single Cylinder Engine

An experimental study has been conducted to investigate the effects of indolene-ethanol blends on engine performance during homogeneous charge compression ignition (HCCI) operation of single-cylinder engine. The engine performance and HCCI stability were investigated and the high enthalpy of vaporization of ethanol resulted in significant intake charge cooling and limited the stable HCCI operation to higher intake temperatures. In the second part of the study, intake air preheat temperature was used to compensate for some of the thermal effects introduced by the fuel blends. The effects of equivalence ratio at a same end of compression temperature for different fuel blends showed that increasing the ethanol content of the fuel blend can extend the stable HCCI lean operating limit. Engine performance was characterized by in-cylinder pressure data, heat release rate, indicated mean effective pressure and exhaust gas emissions (NO and HC).
Technical Paper

A Comparative Study on Different Methods of Using Waste Cooking Oil as Fuel in a Compression Ignition Engine

Different methods to improve the performance of a WCO (waste cooking oil of sunflower) based mono cylinder compression ignition (CI) engine were investigated. Initially WCO was converted into its emulsion by emulsification process and tested as fuel. In the second phase, the engine intake system was modified to admit excess oxygen along with air to test the engine with WCO and WCO emulsion as fuels under oxygen enriched environment. In the third phase, the engine was modified to work in the dual fuel mode with hydrogen being used as the inducted fuel and either WCO or WCO emulsion used as the pilot fuel. All the tests were carried out at 100% and 40% of the maximum load (3.7 kW power output) at the rated speed of 1500 rpm. Engine data with neat diesel and neat WCO were used for comparison. WCO emulsion indicated considerable improvement in performance. The smoke and NOx values were noted to be less than neat WCO.
Technical Paper

A Comparison of Burn Characteristics and Exhaust Emissions from Off-Highway Engines Fueled by E0 and E85

Ethanol fuel has received renewed attention in recent years because of its oxygenate content and its potential to reduce greenhouse gas emissions from spark ignition engines. The economic impact on farm industry has been one of the drivers for its use in engines in the U.S. Although ethanol, in various blends, has been used in automotive engines for almost a decade the fuel has seldom been utilized in off-highway engines where the fuel systems are not well controlled. This investigation was conducted to evaluate exhaust emissions and combustion characteristics of E85 fuel in an off-highway engine used in farm equipment. A single-cylinder, four-stroke, spark ignition engine equipped with a carburetor was used to investigate combustion and exhaust emissions produced by gasoline and blends of gasoline and ethanol fuels. The engine fuel system was modified to handle flow rates required by the engine. A variable size-metering orifice was used to control air-to-fuel ratios.
Technical Paper

A Comparison of EGR Condensate Composition between EGR and Dedicated-EGR Combustion Strategies

Water injection is an effective method for knock control in spark-ignition engines. However, the requirement of a separate water source and the cost and complexity associated with a fully integrated system creates a limitation of this method to be used in volume production engines. The engine exhaust typically contains 10-15% water vapor by volume which could be condensed and potentially stored for future use. In this study, the exhaust condensate composition was assessed for its use as an effective replacement for distilled water. Specifically, condensate samples were collected pre and post-three-way catalyst (TWC) and analyzed for acidity and composition. The composition of the pre and post-TWC condensates was found to be similar however, the pre-TWC condensate was mildly acidic. The mild acidity has the potential to corrode certain components in the intake air circuit.
Technical Paper

A Comparison of the Effect of E85 vs. Gasoline on Exhaust System Surface Temperatures

With concerns over increasing worldwide demand for gasoline and greenhouse gases, many automotive companies are increasing their product lineup of vehicles to include flex-fuel vehicles that are capable of operating on fuel blends ranging from 100% gasoline up to a blend of 15% gasoline/85% ethanol (E85). For the purpose of this paper, data was obtained that will enable an evaluation relating to the effect the use of E85 fuel has on exhaust system surface temperatures compared to that of regular unleaded gasoline while the vehicle undergoes a typical drive cycle. Three vehicles from three different automotive manufacturers were tested. The surface of the exhaust systems was instrumented with thermocouples at specific locations to monitor temperatures from the manifold to the catalytic converter outlet. The exhaust system surface temperatures were recorded during an operation cycle that included steady vehicle speed operation; cold start and idle and wide open throttle conditions.
Journal Article

A Complete Assessment of the Emissions Performance of Ethanol Blends and Iso-Butanol Blends from a Fleet of Nine PFI and GDI Vehicles

Biofuels, such as ethanol and butanol, have been the subject of significant political and scientific attention, owing to concerns about climate change, global energy security, and the decline of world oil resources that is aggravated by the continuous increase in the demand for fossil fuels. This study evaluated the potential emissions impacts of different alcohol blends on a fleet of modern gasoline vehicles. Testing was conducted on a fleet of nine vehicles with different combinations of ten fuel blends over the Federal Test Procedure and Unified Cycle. The vehicles ranged in model year from 2007-2014 and included four vehicles with port fuel injection (PFI) fueling and five vehicles with direct injection (DI) fueling. The ten fuel blends included ethanol blends at concentrations of 10%, 15%, 20%, 51%, and 83% by volume and iso-butanol blends at concentrations of 16%, 24%, 32%, and 55% by volume, and an alcohol mixture giving 10% ethanol and 8% iso-butanol in the final blend.
Technical Paper

A Compositional Representative Fuel Model for Biofuels - Application to Diesel Engine Modelling

The adequacy of the fuels with the engines has been often a major goal for the oil industry or car manufacturers. As the formulation of fuels becomes more complex, the use of numerical simulation provides an efficient way to understand and analyze the combustion process. These conclusions become increasingly true with the appearance of second generation biofuels. This paper describes a methodology for the representation of fuels and biofuels using a lumping procedure combined with adequate thermodynamic and thermophysical models. This procedure allows computing different thermodynamic and thermophysical properties for simulation purposes in internal combustion engines. The lumping approach involves reducing analytical data to a few pseudo-components characterized by their molecular weight, critical properties and acentric factor.
Technical Paper

A Comprehensive Analysis of the Torque Behavior of a Flex Fuel Spark Ignition Engine

Since the debut of the spark ignition engines about 150 years ago, the understanding of an engine torque production has been widely investigated in many engine combustion research laboratories around the world. The effects of an engine geometric and operation parameters like, for instance, throttle angle, spark advance, fuel octane rating and compression ratio have been one of the main goals of these studies. A modern torque model based engine control software, which is able to predict and control engine torque for a given operating condition, makes use of these engine researches’ findings. A new variable which has been added recently into the torque generation study is the ethanol content fuel, in order to suit flex fuel engines application. This paper presents the results of an analysis conducted with a flex fuel engine running on Brazilian gasohol (E25) and hydrous ethanol (E100) fuels.
Technical Paper

A Comprehensive Examination of the Effect of Ethanol-Blended Gasoline on Intake Valve Deposits in Spark-Ignited Engines

Ethanol-gasoline blends are widely understood to present certain technical challenges to engine operation. Despite widespread use of fuels ranging from E5 (5% ethanol in gasoline) in some European countries to E10 (10% ethanol) in the United States to E100 (100% ethanol; “alcool”) in Brazil, there are certain subjects which have only anecdotally been examined. This paper examines two such issues: the effect of ethanol on intake valve deposits (IVD) and the impact of fuel additive on filter plugging (a measure of solubility). The effect of ethanol on IVD is studied along two lines of investigation: the effect of E10 in a multi-fuel data set carried out in the BMW 318i used for EPA and CARB certification, and the effect of varying ethanol content from 0% to 85% in gasoline carried out in a modern flex-fuel vehicle.