Refine Your Search

Topic

Author

Search Results

Viewing 1 to 20 of 26077
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 35, Class 1, Grade 190, Fiber 1

2019-03-12
WIP
AMS3961/3A
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 35, Class 1, Grade 190, Fiber 1

2015-12-02
CURRENT
AMS3961/3
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 35, Class 1, Grade 190, Fiber 2

2015-12-02
CURRENT
AMS3961/2
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 35, Class 1, Grade 190, Fiber 2

2019-03-12
WIP
AMS3961/2A
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 38, Class 2, Grade 193, Style 3K-70-PW, Fiber 1

2015-12-02
CURRENT
AMS3961/1
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 38, Class 2, Grade 193, Style 3K-70-PW, Fiber 1

2019-03-12
WIP
AMS3961/1A
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

400 Hz CONNECTION AIRCRAFT ELECTRICAL MAINTENANCE PROCEDURES

1994-12-01
HISTORICAL
AIR4365
This SAE Aerospace Information Report (AIR) describes field-level procedures to determine if 400 Hz electrical connections for external power may have been subjected to excessive wear, which may result in inadequate disengagement forces.
Standard

400 Hz Connection Aircraft Electrical Maintenance Procedures

2008-03-28
HISTORICAL
AIR4365A
This SAE Aerospace Information Report (AIR) describes field-level procedures to determine if 400 Hz electrical connections for external power may have been subjected to excessive wear, which may result in inadequate disengagement forces.
Standard

70 MPa Compressed Hydrogen Surface Vehicle Fueling Connection Device and Optional Vehicle to Station Communications

2007-05-24
HISTORICAL
J2799_200705
This technical information report specifies a guideline for the hardware requirements for fueling a Hydrogen Surface Vehicle (HSV) with compressed hydrogen storage rated at a Nominal Working Pressure of 70 MPa. It contains a description of the receptacle geometry and optional communication hardware and communications protocol to refuel the HSV. The intent of this document is to enable harmonized development and implementation of the hydrogen fueling interfaces. It is intended to be utilized for hydrogen vehicle field evaluations until enough information is collected to enable standardization. The receptacle portion of this document is to be reevaluated utilizing international field data in approximately two (2) years and subsequently superseded by SAE J2600 in the 2009 timeframe.
Standard

8000 psi Hydraulic Systems: Experience and Test Results

2004-03-18
HISTORICAL
AIR4002
Shortly after World War II, as aircraft became more sophisticated and power-assist, flight-control functions became a requirement, hydraulic system operating pressures rose from the 1000 psi level to the 3000 psi level found on most aircraft today. Since then, 4000 psi systems have been developed for the U.S. Air Force XB-70 and B-1 bombers and a number of European aircraft including the tornado multirole combat aircraft and the Concorde supersonic transport. The V-22 Osprey incorporates a 5000 psi hydraulic system. The power levels of military aircraft hydraulic systems have continued to rise. This is primarily due to higher aerodynamic loading, combined with the increased hydraulic functions and operations of each new aircraft. At the same time, aircraft structures and wings have been getting smaller and thinner as mission requirements expand. Thus, internal physical space available for plumbing and components continues to decrease.
Standard

8000 psi Hydraulic Systems: Experience and Test Results

2012-11-15
CURRENT
AIR4002A
Shortly after World War II, as aircraft became more sophisticated and power-assist, flight-control functions became a requirement, hydraulic system operating pressures rose from the 1000 psi level to the 3000 psi level found on most aircraft today. Since then, 4000 psi systems have been developed for the U.S. Air Force XB-70 and B-1 bombers and a number of European aircraft including the tornado multirole combat aircraft and the Concorde supersonic transport. The V-22 Osprey incorporates a 5000 psi hydraulic system. The power levels of military aircraft hydraulic systems have continued to rise. This is primarily due to higher aerodynamic loading, combined with the increased hydraulic functions and operations of each new aircraft. At the same time, aircraft structures and wings have been getting smaller and thinner as mission requirements expand. Thus, internal physical space available for plumbing and components continues to decrease.
Standard

A Discussion of M85 (85% Methanol) Fuel Specifications and Their Significance

1992-05-01
CURRENT
CRP-002
This report is the result of a Cooperative Research Project undertaken by representatives from GM, Chrysler, Ford, BP Oil, Arco, and Sun Refining and Marketing Co. An information-packed guide, the report includes background information, describes M85 specifications, details the physical properties of M85 vs. gasoline, and examines the effect of M85 on various aspects of vehicle performance and safety. Issued September 1991.
Standard

A Graphical Model for Interactive Distributed Control

2007-07-19
CURRENT
J2356_200707
The demonstrated architectural model and associated graphical techniques defined herein were developed to provide a simple method of visualizing the general functional operation or behavior of a Distributed Embedded System with a strong emphasis on representing system time characteristics.
Standard

A Methodology for Quantifying the Performance of an Engine Monitoring System

2017-10-13
HISTORICAL
AIR4985
The purpose of this SAE Aerospace Information Report (AIR) is to present a quantitative approach for evaluating the performance and capabilities of an Engine Monitoring System (EMS). The value of such a methodology is in providing a systematic means to accomplish the following: 1 Determine the impact of an EMS on key engine supportability indices such as Fault Detection Rate, Fault Isolation Rate, Mean Time to Diagnose, In-flight Shutdowns (IFSD), Mission Aborts, and Unscheduled Engine Removals (UERs). 2 Facilitate trade studies during the design process in order to compare performance versus cost for various EMS design strategies, and 3 Define a “common language” for specifying EMS requirements and the design features of an EMS in order to reduce ambiguity and, therefore, enhance consistency between specification and implementation.
Standard

A Process Standard for the Storage, Retrieval and Use of Three-Dimensional Type Design Data

2003-09-04
HISTORICAL
ARP9034
This document describes requirements for standardized processes (and associated technologies) that ensure type design data are retrievable and usable for the life of a type certificate (50+ years). These processes are primarily concerned with, but not limited to, digital type design data retained in three-dimensional representations and associated data that is required for complete product definition, such as tolerances, specification call-outs, product structure and configuration control data, etc. This process standard includes process requirements for managing the evolution of technologies required to ensure the availability of the data for the life of the product. This data must be available to meet regulatory, legal, contractual and business requirements. This process standard is not intended to incorporate every company specific requirement and does not dictate specific organizational structures within a company.
Standard

A Process Standard for the Storage, Retrieval and Use of Three-Dimensional Type Design Data

2015-04-21
CURRENT
ARP9034A
This document describes requirements for standardized processes (and associated technologies) that ensure type design data are retrievable and usable for the life of a type certificate (50+ years). These processes are primarily concerned with, but not limited to, digital type design data retained in three-dimensional representations and associated data that is required for complete product definition, such as tolerances, specification call-outs, product structure and configuration control data, etc. This process standard includes process requirements for managing the evolution of technologies required to ensure the availability of the data for the life of the product. This data must be available to meet regulatory, legal, contractual and business requirements. This process standard is not intended to incorporate every company specific requirement and does not dictate specific organizational structures within a company.
X