Refine Your Search

Topic

Author

Affiliation

Search Results

Video

1D Simulation and Experimental Analysis of a Turbocharger Compressor for Automotive Engines under Unsteady Flow Conditions

2012-02-15
Zero-dimensional, one-dimensional, and quasi-dimensional models for simulation of SI and CI engines with respect to: engine breathing and boosting; SI combustion and emissions; CI combustion and emissions; fundamentals of engine thermodynamics; thermal management; mechanical and lubrication systems; system level models for controls; system level models for vehicle fuel economy and emissions predictions. Presenter Fabio Bozza, Universita di Napoli
Video

2-Stroke CAI Combustion Operation in a GDI Engine with Poppet Valves

2012-06-18
In order to extend the CAI operation range in 4-stroke mode and maximize the benefit of low fuel consumption and emissions in CAI mode, 2-stroke CAI combustion is revived operating in a GDI engine with poppet valves, where the conventional crankcase scavenging is replaced by boosted scavenging. The CAI combustion is achieved through the inherence of the 2-Stroke operation, which is retaining residual gas. A set of flexible hydraulic valve train was installed on the engine to vary the residual gas fraction under the boosting condition. The effects of spark timing, intake pressure and short-circuiting on 2-stroke CAI combustion and its emissions are investigated and discussed in this paper. Results show the engine could be controlled to achieve CAI operation over a wide range of engine speed and load in the 2-stroke mode because of the flexibility of the electro-hydraulic valvetrain system. Presenter Yan Zhang, Brunel University
Video

5000 Hours Aging of THERBAN® (HNBR) Elastomers in an Aggressive Biodiesel Blend

2012-05-23
TERBAN® hydrogenated nitrile rubber (HNBR) is a specialty elastomer used in demanding engineering applications such as the automotive, heavy duty, and industrial markets. It has excellent combination of heat, oil and abrasion resistance in addition to its high mechanical strength, very good dynamic and sealing properties. This paper will present data on aging HNBR for five thousand hours in an aggressive and un-stabilized B30A biodiesel fuel blend (70% ULSD, 30% SME, and an aggressive additive package) and explore the effect of HNBR polymer properties and vulcanizate composition on the performance in such fuel blends. Presenter Victor Nasreddine
Video

A Framework for Simulation-Based Development and Calibration of VCU-Functions for Advanced PHEV Powertrains

2012-05-23
Due to the integration of many interacting subsystems like hybrid vehicle management, energy management, distance management, etc. into the VCU platform the design steps for function development and calibration become more and more complex. This makes an aid necessary to relieve the development. Therefore, the aim of the proposed simulation-based development and calibration design is to improve the time-and-cost consuming development stages of modern VCU platforms. A simulation-based development framework is shown on a complex function development and calibration case study using an advanced powertrain concept with a plug-in hybrid electric vehicle (PHEV) concept with two electrical axles. Presenter Thomas Boehme, IAV GmbH
Video

A Journalist's Perspective on Hybrids

2011-11-04
Automotive journalists are uniquely located to gain a broad perspective of the field. We learn from specialists, the engineers who perform the actual work, in relatively neutral settings. We also communicate with our readers, the ultimate consumers of both your products and ours. Here I propose to share elements of several of these interactions, especially those pertaining to the coming array of plug-in hybrids from GM, Toyota and Porsche. I also propose to give a brief update of KERS, Kinetic Energy Recovery Systems, in Formula 1. Presenter Dennis J. Simanaitis, Road & Track Magazine
Video

A Method for Testing GPS in Obstructed Environments Where GPS/INS Reference Systems Can Be Ineffective

2011-11-17
When vehicles share certain information wirelessly via Dedicated Short Range Communications (DSRC), they enable a new layer of electronic vehicle safety that, when needed, can generate warnings to drivers and even initiate automatic preventive actions. Vehicle location and velocity provided by Global Navigation Systems (GNSS), including GPS, are key in allowing vehicle path estimation. GNSS is effective in accurately determining a vehicle's location coordinates in most driving environments, but its performance suffers from obstructions in dense urban environments. To combat this, augmentations to GNSS are being contemplated and tested. This testing has been typically done using a reference GNSS system complimented by expensive military-grade inertial sensors, which can still fail to provide adequate reference performance in certain environments.
Video

A Methodology to Assess the Capabilities of a Cluster of Companies: The Case of "Torino Piemonte Aerospace"

2012-03-21
The increasing complexity of aerospace products and programs and the growing competitive pressure is facilitating the aggregation of small, medium and large enterprises of certain geographical regions into more integrated and collaborative entities (clusters). Clusters are by their same nature formed by heterogeneous companies, with huge differences not only in size but also for their core competences: such a diversity is a strength of the cluster, but it also increases its complexity. The purpose of this paper is to describe a benchmarking methodology that can be adopted to assess the performances of companies belonging to a cluster from different perspectives: economics and financials, competitive differentiators, specific know how, business strategies, production and logistic effectiveness, quality of core and supporting processes.
Video

A New Policy for COTS Selection: Overcome the DSM Reliability Challenge

2012-03-13
Up to now, the reliability achieved by COTS components was largely sufficient for avionics, in terms of failure rate as well as time to failure. With the implementation of new and more integrated technologies (90 nm node, 65 nm and below), the question has arisen of the impact of the new technologies on reliability. It has been stated that the lifetime of these new technologies might decrease. The drift is expected to be technology dependent: integration, technology node, materials, elementary structure choices and process pay a key role. Figures have been published, which gives smaller lifetime than the 30 years generally required for avionics. This would of course impact not only the reliability, but also the maintenance of COTS-based avionics. Hence a new policy should be defined for the whole COTS supply chain. Faced with these impending risks, different methodologies have been developed.
Video

A Pathway to Lean Engine Operation: Pre-Chamber Jet Ignition Combustion

2012-05-10
Turbulent Jet Ignition is an advanced spark initiated pre-chamber combustion system for otherwise standard spark ignition engines. Combustion in the main chamber is initiated by jets of partially combusted (reacting) pre-chamber products which provide a high energy ignition source. The resultant widely distributed ignition sites allow relatively small flame travel distances enabling short combustion durations and high burn rates. This presentation outlines development of this combustion concept in a modern normally aspirated PFI production engine. Experimental results have highlighted high thermal efficiency (42.8%), significant fuel economy improvement (>20%), low engine out NOx (<10 ppm), knock limit extension, high load capability (>13 bar IMEPn) and high speed operation (5500 rev/min). Presenter William P Attard, MAHLE Powertrain LLC
Video

A Quantitative Risk Analysis for AeroMACS Network Security in SESAR

2012-03-16
The growing need for an efficient worldwide airspace system management, generated by an increasing traffic load, requires new capabilities for air-ground data communication technologies. In order to cope with these requirements, the Federal Aviation Administration (FAA), EUROCONTROL, and the International Civil Aviation Organization (ICAO) have jointly made specific recommendations for candidate technologies for the airport surface communication network. In the SESAR project, the Aeronautical Mobile Airport Communication System (AeroMACS) technology is being developed in such a way to provide next generation broadband and wireless data communications for airport surface applications (i.e. Air Traffic Control ? ATC, Airline Operational Communications ? AOC, and surface vehicles services).
Video

A Study of PGM-Free Oxidation Catalyst YMnO3 for Diesel Exhaust Aftertreatment

2012-06-18
Manganese oxides show high catalytic activity for CO and HC oxidation without including platinum group metals (PGM). However, there are issues with both thermal stability and resistance to sulfur poisoning. We have studied perovskite-type YMnO3 (YMO) with the aim of simultaneously achieving both activity and durability. This paper describes the oxidation activity of PGM-free Ag/i-YMO, which is silver supported on improved-YMO (i-YMO). The Ag/i-YMO was obtained by the following two methods. First, Mn4+ ratio and specific surface area of YMO were increased by optimizing composition and preparation method. Second, the optimum amount of silver was supported on i-YMO. In model gas tests and engine bench tests, the Ag/i-YMO catalyst showed the same level of activity as that of the conventional Pt/?-Al2O3 (Pt = 3.0 g/L). In addition, there was no degradation with respect to either heat treatment (700°C, 90 h, air) or sulfur treatment (600°C to 200°C, total 60 h, 30 ppm SO2).
Video

A350XWB Fiber Placement Spars; From R&D Conception Phase to Serial Production

2012-03-23
At the end of 2006, two MTorres engineers visited the plant of Airbus UK in Filton receiving a new challenge: Find a more efficient way to manufacture Carbon Fiber Spars for the new A350 program. The range of possibilities were wide: manual infusion methods (RTM, RIM, RFI...), Automatic Taping & hot forming, or the new technology proposed, Fiberplacement or AFP. Two (2) options were considered: hot forming+ATL and AFP (both using prepeg technology.) The usage of a flat lay-up + hot forming technology was used in the only Airbus program that used carbon fiber for the wing manufacturing so far, the A400M. The expected greater complexity of A350 spar created doubts on the feasibility of using the above process, while the AFP technology, consisting of laying up directly on the final shape of the spar, also raised questions of technical feasibility, apart from the economic ?business case?, in case the productivity of the cell was not big enough. A ?Spar team?
Video

ARAMiS - Taming Multicores for Safe Transportation

2012-05-17
Multicore processor are well established in classical and tablet personal computers for some year. Such processors use more then one central core for computation and allow to integrate more computational power with smaller costs. However more than 90% of all processors worldwide are not placed in classical IT but are empedded in bigger systems like in modern vehicles or airplanes. Such systems face a very high demand in terms of safety, security an reliability which hinders the use of multicores in such systems. The funded project ARAMiS faces these demands and has the goal to enable the usability of multicore systems in the domains automotive and avionics, as well as later also railway. ARAMiS is the basis for higher traffic safety, traffic efficiency and comfort.
Video

AVTA - Plug-in Electric Vehicle Demonstration Results

2012-03-29
The Idaho National Laboratory is collecting data from grid-connected electric drive vehicles and charging infrastructure that have been deployed across the United States in five large-scale demonstrations funded by the U.S. Department of Energy. These demonstrations include The EV Project infrastructure demonstration, led by ECOtality North America; Coulomb Technologies� ChargePoint America infrastructure demonstration; General Motors� Chevrolet Volt extended range electric vehicle demonstration; Chrysler�s Ram plug-in hybrid electric vehicle demonstration; and the Ford Escape plug-in hybrid electric vehicle advanced research fleet demonstration. This presentation describes real-world vehicle and charging infrastructure usage observed during the early stages of these demonstrations. Presenter John Smart, Idaho National Lab.
Video

Achieving a Lightweight and Steel-Intensive Body Structure for Alternative Powertrains

2012-02-14
FutureSteelVehicle's (FSV) objective is to develop detailed design concepts for a radically different steel body structure for a compact Battery Electric Vehicle (BEV). It also will identify structure changes to accommodate larger Plug-In Hybrid (PHEV) and Fuel Cell (FCEV) vehicle variants. The presentation will demonstrate seven optimized structural sub-systems that contribute to the program's 35 percent mass reduction goals and meet its safety and life cycle emissions targets. It will explain the advanced design optimization process used and the resulting aggressive steel concepts. Presenter Jody R. Shaw, US Steel
Video

Advanced Combustion & System Engineering - Affordable Fuel Economy?

2012-05-10
Future fuel economy targets represent a significant challenge to the automotive industry. While a range of technologies are in research and development to address this challenge, they all bring additional cost and complexity to future products. The most cost effective solutions are likely to be combinations of technologies that in isolation might have limited advantages but in a systems approach can offer complementary benefits. This presentation describes work carried out at Ricardo to explore Intelligent Electrification and the use of Stratified Charge Lean Combustion in a spark ignition engine. This includes a next generation Spray Guided Direct Injection SI engine combustion system operating robustly with highly stratified dilute mixtures and capable of close to 40% thermal efficiency with very low engine-out NOx emissions.
Video

Advanced Testing of Electric Drives and Motors

2012-05-16
This presentation will cover an overview of challenges and key discussion points for advanced electric motor and drive testing . Voiko will visit some examples of how D&V approaches these issues and also some suggestions for how the industry can view these intriguing problems as opportunities. The presentation will also delve into current testing developments that involve resolver, load bank and power measurement devices by highlighting solutions in the market today. There will also be a cursory look into the future of electric motor testing and what we can expect in the near term. Presenter Voiko Loukanov, D&V Electronics Limited
Video

Advances in Exhaust Temperature Sensing and their Applicability for Diesel Emission Diagnostics

2012-01-24
Sensing exhaust gas temperature is a key component in diesel after treatment systems for both control and diagnostics. Accuracy varies significantly depending upon the sensing technology and implementation in the system. Prior published work has demonstrated that resistance based temperature sensors are not able to achieve the system accuracy required for advanced diagnostics over the life of the emission system. This presentation will show that it is feasible to achieve better than �10�C end of life system accuracy by means of active thermocouple technology. Results from tests at Michigan Technological University will be used to illustrate diagnostic uncertainty related to the application of temperature sensors and a specific DOC/DPF example will be used to show the benefits of accurate temperature based diagnostics. Presenter D. P. Culbertson, Watlow Gordon
Video

Advances of Virtual Testing and Hybrid Simulation in Automotive Performance and Durability Evaluation

2012-02-15
Virtual testing is a method that simulates lab testing using multi-body dynamic analysis software. The main advantages of this approach include that the design can be evaluated before a prototype is available and virtual testing results can be easily validated by subsequent physical testing. The disadvantage is that accurate specimen models are sometimes hard to obtain since nonlinear components such as tires, bushings, dampers, and engine mounts are hard to model. Therefore, virtual testing accuracy varies significantly. The typical virtual rigs include tire and spindle coupled test rigs for full vehicle tests and multi axis shaker tables for component tests. Hybrid simulation combines physical and virtual components, inputs and constraints to create a composite simulation system. Hybrid simulation enables the hard to model components to be tested in the lab.
X