Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

A Three-Dimensional Level-Set Front Tracking Technique for Automatic Multi-Step Simulations of In-Flight Ice Accretion

2023-06-15
2023-01-1467
This paper presents a novel fully-automatic remeshing procedure, based on the level-set method and Delaunay triangulation, to model three-dimensional boundary problems and generate a new conformal body-fitted mesh. The proposed methodology is applied to long-term in-flight ice accretion, which is characterized by the formation of extremely irregular ice shapes. Since ice accretion is coupled with the aerodynamic flow field, a multi-step procedure is implemented. The total icing exposure time is subdivided into smaller time steps, and at each time step a three-dimensional body-fitted mesh, suitable for the computation of the aerodynamic flow field around the updated geometry, is generated automatically. The methodology proposed can effectively deal with front intersections, as shown with a manufactured example.
Technical Paper

Aerodynamic Analysis of an Unmanned Cyclogiro Aircraft

2018-10-29
2018-01-6005
Very little is currently known of the aerodynamic interaction between neighboring cycloidal rotors. Such knowledge is, however, of crucial importance to tune the controller and rotor disposition of a cyclogiro aircraft. Thus, a three-dimensional computational fluid dynamics (CFD) model is developed, validated, and used to analyze the D-Dalus L1 four-rotor unmanned aircraft operating under several configurations. The model solves the Euler equations using the OpenFOAM toolbox in order to provide fast results on a desktop computer. Validation is performed against thrust forces and flow streamlines obtained during wind tunnel experiments at various flight velocities. Numerical results from CFD match the trends of the experimental data. Flow behavior matches the video footage of the wind tunnel tests. Although boundary layer effects are neglected, satisfactory results are obtained both qualitatively and quantitatively.
Technical Paper

Design Restraints in Space Laboratories

2003-07-07
2003-01-2435
1Restraints constitute the unique and necessary aids for living and working in microgravity conditions in which crewmembers need facilities as support to move around and as restraints while they work. In environments with microgravity, disturbance to the vestibular sense, when it occurs together with conflicting visual and perceptive stimuli, can cause disorientation, vertigo and illusions regarding posture and movement. Therefore, the design of restraints is a critical ingredient of success for crewmembers performance in space during both IVA and EVA activities. Standard restraints and mobility aids are provided on ISS such that all installation, operation, and maintenance can be performed: Foot Restraint, Adjustable Length Tether, Handrails, Adjustable Length Tether and Torso Restraint Assembly. Crewmembers use Standard Foot Restraints and Handrails to improve the movement capacities and the postural stability.
Technical Paper

Development of Production Control Algorithms for Hybrid Electric Vehicles by Using System Simulation: Technology Leadership Brief

2012-10-08
2012-01-9008
In an earlier paper, the authors described how Model-Based System Engineering could be utilized to provide a virtual Hardware-in-the-Loop simulation capability, which creates a framework for the development of virtual ECU software by providing a platform upon which embedded control algorithms may be developed, tested, updated, and validated. The development of virtual ECU software is increasingly valuable in automotive control system engineering because vehicle systems are becoming more complex and tightly integrated, which requires that interactions between subsystems be evaluated during the design process. Variational analysis and robustness studies are also important and become more difficult to perform with real hardware as system complexity increases. The methodology described in this paper permits algorithm development to be performed prior to the availability of vehicle and control system hardware by providing what is essentially a virtual integration vehicle.
Technical Paper

Experimental Characterization of Power Dissipation of Battery Cells for Space Environment

2002-07-15
2002-01-2544
An experimental campaign is presented aiming at the characterization of thermal dissipation of batteries to be used on board of small satellites. A suitably designed device allows to manage automatically the orbital cycling simulation between battery cell charge and discharge. The cell thermal performance is characterized in various combinations of temperature, discharge current and Depth of Discharge. The gathered data are used for providing guidelines in the design of a family of Italian Small Satellites.
Technical Paper

Investigation of the Influence of Aero-Thermal Non-equilibrium Conditions of an SLD Cloud on Airfoil Icing

2023-06-15
2023-01-1406
This study examines the impact of slip in aero-thermal conditions of supercooled large droplets (SLD) produced in an Icing Wind Tunnel (IWT) on the ice accretion characteristics. The study identifies potential biases in the SLD model development based on IWT data and numerical predictions that assume the SLD to be in aerothermal equilibrium with the IWT airflow. To obtain realistic temperature and velocity data for each droplet size class in the test section of the Braunschweig Icing Wind Tunnel (BIWT), a Lagrangian droplet tracking solver was used within a Monte Carlo framework. Results showed that SLDs experience considerable slips in velocity and temperature due to their higher inertia and short residence time in the Braunschweig IWT. Large droplets were found to be warmer and slower than the flow in the test section, with larger droplets experiencing larger aerothermal slips.
Journal Article

Maximizing Net Present Value of a Series PHEV by Optimizing Battery Size and Vehicle Control Parameters

2010-10-19
2010-01-2310
For a series plug-in hybrid electric vehicle (PHEV), it is critical that batteries be sized to maximize vehicle performance variables, such as fuel efficiency, gasoline savings, and zero emission capability. The wide range of design choices and the cost of prototype vehicles calls for a development process to quickly and systematically determine the design characteristics of the battery pack, including its size, and vehicle-level control parameters that maximize the net present value (NPV) of a vehicle during the planning stage. Argonne National Laboratory has developed Autonomie, a modeling and simulation framework. With support from The MathWorks, Argonne has integrated an optimization algorithm and parallel computing tools to enable the aforementioned development process. This paper presents a study that utilized the development process, where the NPV is the present value of all the future expenses and savings associated with the vehicle.
Technical Paper

MonteCarlo Techniques in Thermal Analysis – Design Margins Determination Using Reduced Models and Experimental Data

2006-07-17
2006-01-2113
In the paper several application techniques of MonteCarlo (MC) method applied to thermal analysis of space vehicles are presented. Although these methods are widely used in other engineering domains, their introduction to the thermal one is quite recent and not fully developed in the industrial practice. This paper aims at showing that, even without demanding computation resources (all what presented has been obtained with a single processor PC) MonteCarlo analysis techniques, in a preliminary design phase, can support and integrate engineering judgment of the thermal designer. In particular, it is exploited the applicability of the method to reduced thermal models, with a clear advantage in terms of computation time. An original approach is proposed, and results are shown. The papers shows the applicability of the MC method to the case when experimental data of the uncertain parameters are available, using the bootstrap re-sampling techniques.
Technical Paper

Nanoparticle-enhanced Heat Transfer Fluids for Spacecraft Thermal Control Systems

2006-07-17
2006-01-2264
The addition of metal nanoparticles to standard coolant fluids dramatically increases the thermal conductivity of the liquid. The properties of the prepared nanofluids will allow for lighter, smaller, and higher efficiency spacecraft thermal control systems to be developed. Nanofluids with spherical or rod-shaped metal nanoparticles were investigated. At a volume concentration of 0.5%, the room temperature thermal conductivity of a 2 nm spherical gold nanoparticle-water solution was increased by more than 10% over water alone. Silver nanorods increased the thermal conductivity of ethylene glycol by 53% and water by 26%.
Technical Paper

Novel Framework for the Robust Optimization of the Heat Flux Distribution for an Electro-Thermal Ice Protection System and Airfoil Performance Analysis

2023-06-15
2023-01-1392
We present a framework for the robust optimization of the heat flux distribution for an anti-ice electro-thermal ice protection system (AI-ETIPS) and iced airfoil performance analysis under uncertain conditions. The considered uncertainty regards a lack of knowledge concerning the characteristics of the cloud i.e. the liquid water content and the median volume diameter of water droplets, and the accuracy of measuring devices i.e., the static temperature probe, uncertain parameters are modeled as uniform random variables. A forward uncertainty propagation analysis is carried out using a Monte Carlo approach. The optimization framework relies on a gradient-free algorithm (Mesh Adaptive Direct Search) and three different problem formulations are considered in this work. Two bi-objective deterministic optimizations aim to minimize power consumption and either minimize ice formations or the iced airfoil drag coefficient.
Technical Paper

Pressurized and Atmospheric Pressure Gasoline-Fueled Polymer Electrolyte Fuel Cell System Performance

1999-08-02
1999-01-2574
The operating pressure is one of the critical issues in designing a gasoline-fueled PEM fuel cell system for transportation applications. Pressurized (3atm) and atmospheric pressure (1atm) fuel cell systems are being considered by various developers for automotive applications. Systems analyses have been performed for the two systems using GCtool, a computer simulation code developed at Argonne National Laboratory. The two systems were designed for comparable overall system efficiencies at a rated design power of 50 kW. The characteristics and performance of the different components of the two systems were compared at the design power and at part-load operating conditions. Transient analyses were performed to investigate the dynamic response of the two systems during cold startup. The pros and cons of the two systems regarding their performance, size, and preliminary cost estimates are presented.
Technical Paper

Test-Model Correlation in Spacecraft Thermal Control by Means of MonteCarlo Techniques

2007-07-09
2007-01-3120
In the paper some methods are presented, with the corresponding practical examples, related to MonteCarlo (MC) techniques for thermal model/test correlation purposes. The MonteCarlo techniques applied to model correlation are intended to be used as an alternative to empirical ‘manual’ correlation techniques, gradients methods, matrix methods based on least square fit minimization. First of all, Design Of Experiments (DoE) tools are used to determine the model response to uncertain parameters and the confidence level of such a response. A sensitivity map is built, allowing the design of the test to maximize the response of the system to the uncertain parameters. Techniques derived from the extreme statistics are used to extrapolate data beyond test limits, with a sufficient confidence in the queue behaviour.
X