Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Advanced Thermal Control Coatings for Use in Low Earth Orbit

1994-06-01
941432
A method for applying an organic coating to Z-93, an inorganic white thermal control paint, was developed to protect Z-93 from contamination and damage. A layer of FEP Teflon™ was applied over Z-93 to provide a smooth, continuous surface without adversely affecting its optical properties. Additionally, new low-absorptance, controlled-emittance thermal control paints were developed for low Earth orbit (LEO) applications, such as the International Space Station. These paints have a range of infrared emittances from 0.26 to 0.88, and are stable in simulated LEO environments, including atomic oxygen and ultraviolet radiation. Patent applications have been submitted for these concepts.
Technical Paper

Current Riveting/Fastening Methodology and Future Assembly Equipment Philosophy

1996-10-01
961866
This paper is focusing on considerations pertaining to riveting/fastening systems and assembly methodology currently in use for large aircraft fuselage structures. Discussion of process principles on which current systems are based is addressing distribution of rivets along the aircraft structure, riveting/fastening systems and equipment flexibility. An attempt was made to predict the most probable future equipment development trends based on the need for more efficiency in all aircraft structural assembly and in high level and final assembly areas.
Technical Paper

Design and Performance of a 140 KVA, 3 Phase, 230 VAC, Variable Frequency, Solid State Power Controller

1997-06-18
971246
This paper describes the design and testing of a three phase, 200 Amp. per phase, AC power controller intended to replace electromechanical bus tie and cross tie contactors in commercial aircraft electric power systems. In order to design an effective overall electric power system, both the primary transmission subsystem and the secondary distribution subsystem must operate together, controlling the flow of power in a seamless fashion. This is not possible using electromechanical contactors in the primary subsystem.
Technical Paper

Initial Identification of Aircraft Tire Wear

1995-05-01
951394
Tactical aircraft have tire lives as low as 3-5 landings per tire causing excessive support costs. The goal of the Improved Tire Life (ITL) program was to begin developing technology to double aircraft tire life, particularly for tactical aircraft. ITL examined not only the tire, but also aircraft/landing gear design, aircraft operations, and the operational environment. ITL had three main thrusts which were successfully accomplished: 1) development of an analytical tire wear model, 2) initiation of technology development to increase tire life, and 3) exploration of new and unique testing methods for tire wear. This paper reports the work performed and the results of the USAF sponsored ITL program.
Technical Paper

Integrated Aircraft Thermal Management and Power Generation

1993-07-01
932055
Future military aircraft will demand lower cost and lower weight subsystems that are more reliable, and easier to maintain and support. To identify and develop subsystems integration technologies that could provide benefits such as these to current and future military aircraft, the Air Force Wright Laboratory (WL/FIVE) initiated the Subsystem Integration Technology (SUIT) program in 1991. McDonnell Douglas Aerospace (MDA) together with Pratt and Whitney (PWA), and AlliedSignal Aerospace Systems and Equipment (ASE) was one of three teams that participated in Phase I of the SUIT program. The MDA Team's goal was to conceptually formulate a SUIT approach which would provide significantly reduced weight and costs while increasing cooling and power generation capabilities. These goals were achieved with a new and innovative energy subsystem suite which integrates aircraft and engine subsystem power, cooling, pumping, and controls.
Technical Paper

Operations and Staff Support for Chamber Testing of Advanced Life Support Systems

1995-07-01
951487
The successes of the long-duration MDA/NASA test programs for advanced life-support systems conducted prior to 1971 were highly dependent on the selection and training of both the test crews that remained inside the test chamber throughout the test periods and the outside operating staff. The operating staff was responsible for overall test performance, crew safety monitoring, operation and maintenance of the test facilities, and collection and maintenance of data. A selection, training, and certification program was developed and performed to ensure operating staff members had the correct technical skills and could work effectively together with the inside crew. A training program was designed to ensure that each selected operating staff member was capable of performing all assigned functions and was sufficiently cross-trained to serve at other positions on a contingency basis, if needed.
Technical Paper

Spacecraft Fire Detection and Suppression (FDS) Systems: An Overview and Recommendations for Future Flights

1993-07-01
932166
As manned spacecraft have evolved into larger and more complex configurations, the mandate for preventing, detecting, and extinguishing on-board fires has grown proportionately to ensure the success of progressively ambitious missions. The closed environment and high value of manned spacecraft offer the Fire Detection and Suppression (FDS) systems designer significant challenges. With the presence of Oxygen (O2), flammable materials, and ignition sources, it is impossible to completely remove the likelihood of a spacecraft fire. Manned spacecraft contain these three ingredients for fire; therefore, it becomes profitable to review past designs of FDS systems and ground testing to determine system performance and lessons learned in the past for present and future applications.
Technical Paper

The KEEP EAGLE F-15E High Angle-of-Attack Flight Test Program

1996-10-01
965574
The KEEP EAGLE flight test program was conducted from August 1994 until August 1995 at Edwards AFB by a combined government/contractor test team to evaluate improvements to F-15E high angle-of-attack and spin recovery characteristics. This paper will trace the program from its inception in 1992 until conclusion in 1995, with emphasis on the test approach and flight test techniques employed for this high risk program. Specifically, the test approach included novel assessments of spin recovery control power early in the flight test program using controlled build-ups in yaw rate. The program also used simulation effectively to improve test efficiency and maintain test team proficiency with normal and emergency procedures. These techniques allowed a relatively aggressive flight test program without compromising safety. A total of 18 different aircraft configurations were successfully tested, with 146 developed spins completed throughout the course of 81 program flights.
X