Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Bracing Position for Side-Facing Seats During Impact

2000-04-11
2000-01-2111
Side-facing seats are present in a variety of aircraft. During impact, these seats load the occupants in a different manner than typical forward-facing seats, namely the occupants are exposed to a lateral impact. In order to minimize injury during a crash, it is necessary for the occupants to prepare themselves and be situated in a position for maximum protection. In an effort to understand occupant initial position in a side-facing seat, a 3-D rigid-body model was developed of a side-facing seat configuration with three occupants, using the Articulated Total Body (ATB) program. The occupants were seated side-by-side in webbed troop-style seats, and each occupant was restrained by a lap belt. Three different initial occupant positions were studied, and each of the three occupants in a given simulation were seated in the same position. A 10 G lateral pulse with an approximate duration of 200 ms was applied to the vehicle.
Technical Paper

Computational Analyses of Ejection Seat Cushions for Optimal Control of Spinal Injuries

2003-09-08
2003-01-3001
Investigations were made on computational analyses of ejection seat cushions, which include the characterization of the impact properties of ejection seat cushions, computational modeling of an ejection seat cushion system using a rigid multi-body dynamics program, parametric optimization of the cushion impact properties, and global sensitivity analysis of the safety performance of a cushion to its impact properties. The results indicate that computational analyses can be used to effectively evaluate and improve the cushion performance in the prevention and reduction of spinal injuries.
Technical Paper

Investigations of the Performance of Ejection Seat Cushions for Safety and Comfort

2005-10-03
2005-01-3263
Two series of tests were conducted to investigate the performance of ejection seat cushions for safety and comfort, respectively. In the safety study, seven operational and prototype cushions were tested on the vertical deceleration tower, where the cushions were placed between the seat pan and the occupant (a 50th percentile Hybrid III manikin) and subjected to +Gz impact at 8, 10, and 12 g, respectively. In the comfort investigation, twenty volunteer subjects (12 females and 8 males) with a range of anthropometry were tested on four operational and prototype cushions over eight-hour durations. The safety performance of a cushion is evaluated by the impact transmissibility from the carriage acceleration to the peak lumbar load, whereas the sitting comfort performance is assessed in terms of the peak contact pressure and subjective survey data.
Technical Paper

Using ATB in Optimal Injury Prevention and Reduction

2003-06-17
2003-01-2182
The use of digital human modeling in optimal injury prevention and reduction was studied and is described in this paper. The optimal injury prevention and reduction was treated as an optimization problem of a biomechanical system consisting of the safety unit and occupant. The issues of incorporating the Articulated Total Body (ATB) model, a digital human modeling tool, into an optimization process for the modeling and simulation of the biomechanics of the occupant were addressed. Modifications were made on the ATB source code, turning it into a subroutine that can be used in optimization. General considerations were also given to the creation of an interface that uses ATB as an analysis tool in the approximate optimizations. As a practical engineering application, the optimization of the ejection seat cushion impact properties for the minimization of the risk of spinal injuries was investigated.
X