Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

2-Stroke High Speed Diesel Engines for Light Aircraft

2011-09-11
2011-24-0089
The paper describes a numerical study, supported by experiments, on light aircraft 2-Stroke Direct Injected Diesel engines, typically rated up to 110 kW (corresponding to about 150 imperial HP). The engines must be as light as possible and they are to be directly coupled to the propeller, without reduction drive. The ensuing main design constraints are: i) in-cylinder peak pressure as low as possible (typically, no more than 120 bar); ii) maximum rotational speed limited to 2600 rpm. As far as exhaust emissions are concerned, piston aircraft engines remain unregulated but lack of visible smoke is a customer requirement, so that a value of 1 is assumed as maximum Smoke number. For the reasons clarified in the paper, only three cylinder in line engines are investigated. Reference is made to two types of scavenging and combustion systems, designed by the authors with the assistance of state-of-the-art CFD tools and described in detail in a parallel paper.
Article

2050 aircraft engine designs go radical, part 1

2018-10-23
The search for ever-lower emission technology for future generations of aircraft engines is actively progressing on both sides of the Atlantic. Tucked away on a modest-size stand at this year’s Farnborough International Airshow was a highly varied collection of unconventional engine technology displays – a clear indication of radical innovation already being investigated as a part of Ultimate, the European Horizon 2020 research and innovation project.
Article

2050 aircraft engine designs go radical, part 2

2018-10-24
In part two of a two-part series, Richard Gardner discusses various aerospace propulsion innovations and continued work by aerospace engineers and scientists to advance aircraft engine technologies to increase efficiency and lower emissions.
Technical Paper

21st Century Aircraft Potable Water Systems

1999-10-19
1999-01-5556
Aircraft potable (drinking) water systems haven’t changed significantly in the last half-century. These systems consist of cylindrical water tanks pressurized by bleed air from the jet engines, with insulated stainless steel distribution lines. What has changed recently is the increase in the possibility of aircraft picking up contaminated drinking water at foreign and domestic stops. Customer awareness of these problems has also changed - to the point where having reliable drinking water is now a competitive issue among airlines. Old style potable water systems that are used on modern aircraft are high maintenance and exacerbate the growth of microbes because the water is static much of the time. The integrity of some pressurized water tanks are also a concern after years of use. Cost-effective mechanical and biological solutions exist that can significantly reduce the amount of chemicals added and provide good potable water.
Technical Paper

3D Immersed Boundary Methods for the Calculations of Droplet Trajectories towards Icing Application

2023-06-15
2023-01-1458
The in-flight ice accretion simulations are typically performed using a quasi-steady formulation through a multi-step approach. As the ice grows, the geometry changes, and an adaptation of the fluid volume mesh used by the airflow and droplet-trajectory solver is required. Re-meshing or mesh deformation are generally employed to do that. The geometries formed are often complex ice shapes increasing the difficulty of the re-meshing process, especially in three-dimensional simulations. Consequently, difficulties are encountered when trying to automate the process. Contrary to the usual body-fitted mesh approach, the use of immersed boundary methods (IBMs) allows solving, or greatly reducing, this problem by removing the mesh update, facilitating the global automation of the simulation. In the following paper, an approach to perform the airflow and droplet trajectory calculations for three-dimensional simulations is presented. This framework utilizes only immersed boundary methods.
Technical Paper

A 50 Wh Open Core High-Speed Flywheel

1999-08-02
1999-01-2615
In low earth orbit satellite applications, spacecraft power is provided by photovoltaic cells and batteries. Unfortunately, use of batteries present difficulties due to their poor energy density, limited cycle lifetimes, reliability problems, and the difficulty in measuring the state of charge. Flywheel energy storage offers a viable alternative to overcome some of the limitations presented by batteries. FARE, Inc. has built a 50 Wh flywheel energy storage system. This system, called the Open Core Flywheel, is intended to be a prototype energy storage device for low earth orbit satellite applications. To date, the Open Core Flywheel has achieved a rotational speed of 26 krpm under digital control.
Technical Paper

A COMPARISON OF AIRPLANE AND AUTOMOBILE ENGINES

1919-01-01
190006
ANY aggregation of parts assembled to obtain a mechanical result is a series of compromises. The relative importance of the objectives governs the nature of the compromise. The major objectives to be considered in the design of airplane engines are (1) Reliability (2) Small weight per horsepower (3) Economy of fuel and oil consumption (4) Carburetion that permits of easy starting; maximum power through a range of 30 per cent of the speed range; and idling at one-quarter maximum speed without danger of stalling (5) Ability to deliver full power through a small speed range without excessive vibration (6) Complete local cylinder-cooling under conditions of high mean effective pressure (7) Compactness The automobile engine must have (1) Reliability (2) Silence (3) Carburetion that accomplishes proper and even firing in all cylinders under varying throttle conditions, through speeds covering more than 90 per cent of the speed range of the engine.
Technical Paper

A COMPARISON OF TURBINES FOR TURBOJET ENGINES AND SPACE POWERPLANTS

1963-01-01
630113
The characteristics of turbines for turbojet and space power plant applications are compared on the basis of power requirement trends, working fluids, materials, and system requirements. The differences in Brayton and Rankine cycles, the requirements of the cycles imposed on turbines, and typical losses inherent in present low power space turbines are discussed. A comparison is made of representative present and future turbines for turbojet and space power applications. Future large space turbines will parallel the performance and design techniques of high performance gas turbines. Some of the design techniques of steam turbines can also be used because of experience with wet vapor and long endurance. The future goals and problem areas of turbojet and space turbines are shown.
Technical Paper

A Closed Cycle, High-Altitude Rotary Engine for Unmanned Ozone Sampler

1992-08-01
921548
This paper documents the design and validation of a closed cycle propulsion system suitable for use on the Perseus A high altitude research aircraft. The atmospheric science community is expected to be the primary user of this aircraft with initial missions devoted to the study of ozone depletion and global warming. To date large amounts of funding are not available to the atmospheric science community, so to be useful, the aircraft must satisfy stringent cost and performance criteria. Among these, the aircraft has to be capable of carrying 50 kg of payload to altitudes of at least 25km, have a initial cost in the $1-2M range, be capable of launch from remote sites, and be available no later than 1994. These operational criteria set narrow boundaries for propulsion system cost, complexity, availability, reliability, and logistical support requirements.
Technical Paper

A Comparative Study of a Multi-Gas Generator Fan to a Turbofan Engine on a Vertical Takeoff and Landing Personal Air Vehicle

2006-08-30
2006-01-2435
This paper attempts to assess the benefits of a unique distributed propulsion concept, known as the Multi-Gas Generator Fan (MGGF) system, over conventional turbofan engines on civilian vertical takeoff and landing (VTOL) applications. The MGGF-based system has shown the potential to address the fundamental technical challenge in designing a VTOL aircraft: the significant mismatch between the power requirements at lift-off/hover and cruise. Vehicle-level performance and sizing studies were implemented using the Grumman Design 698 tilt-nacelle V/STOL aircraft as a notional personal air vehicle (PAV), subjected to hypothetical single engine failure (SEF) emergency landing requirements and PAV mission requirements.
Technical Paper

A Computer Analysis of Large Booster Structures for Design Optimization

1963-01-01
630390
In designing large booster structures, a major area requiring extensive stress analysis is the discontinuous region, such as the skirt intersection, the sculptured joint, and the reinforced opening. This paper presents a computer solution of stresses and displacement in a typical skirt intersection consisting of (1) a variable-walled transition cylinder, (2) a skirt cylinder, (3) a spheroidal dome, and (4) an infinitely long cylinder. The solution of the variable-walled cylinder is accomplished by integrating numerically a fourth-order differential equation. From the computer analysis the theoretical stresses at the intersection of a typical large-diameter rocket motor case are obtained.
Technical Paper

A Computer Technique for the Determination of Brake Horsepower Output of Normally-Aspirated Reciprocating Aircraft Engines

1977-02-01
770465
This paper develops a set of seven general equations which describe various portions of a standard engine performance chart. A regression analysis technique is then employed to evaluate the constants in these equations which identifies them to a particular engine. Computer programs which employ this technique are provided. A final program is provided which utilizes the equations to yield a value of brake horsepower for an input of any combination of RPM, manifold air pressure, air temperature, and pressure altitude.
Journal Article

A Continuing Investigation of Diurnal and Location Trends in an Ice Crystal Icing Engine Event Database

2019-06-10
2019-01-1964
Due to ongoing efforts by the aviation industry, much has been learned over the last several years regarding jet engine power loss and compressor damage events caused by the ingestion of high concentrations of ice crystal particles into the core flow path. Boeing has created and maintained a database of such ice crystal icing (ICI) events to aid in analysis and further study of this phenomenon. This article provides a general update on statistics derived from the Boeing event database, and provides more details on specific event clusters of interest. A series of three flight campaigns have, over the past five years, collected in-situ data in deep convective clouds that will be used for the assessment of the new FAA CFR Part 33 ice crystal environmental envelope Appendix D, and the equivalent EASA CS-25 Appendix P.
Technical Paper

A Control Concept Combining the Best of the Current Hydromechanical and Electronic Technologies

1974-02-01
740380
The AiResearch TFE731-2 Turbofan Engine Control system was created out of a recognition of engine and aircraft operating requirements in which a free weighting of candidate control components and logic was made. From this free design iteration process, which considered both conventional and advanced concepts of control, the control described in this paper has evolved and has fulfilled the in-flight operating requirements of the engine.
Standard

A GUIDE TO AIRCRAFT TURBINE ENGINE VIBRATION MONITORING SYSTEMS

1992-03-10
HISTORICAL
AIR1839A
This Aerospace Information Report (AIR) is a general overview of typical airborne vibration monitoring (AVM) systems with an emphasis on system hardware design considerations. It describes AVM systems currently in use. The purpose of this AIR is to provide information and guidance for the selection, installation, and use of AVM systems and their elements. This AIR is not intended as a legal document but only as a technical guide.
Technical Paper

A Grand Design of Future Electric Vehicle with Fuel Economy More than 100 Km/Liter

1999-08-02
1999-01-2711
In this study, the authors concluded that a super energy-efficient vehicle (SEEV) with fuel economy more than 100km/liter could be possible with the present technology level. The new environmentally-compatible vehicle was designed to mitigate urban warming, air pollution and CO2 emissions in the urban area. The authors evaluated optimal specifications of the new concept energy-efficient electric vehicle (EV) equipped with flywheel and photovoltaic (PV) cell and also reported the results of the running simulations for the proposed vehicle. The proposed SEEV will be very promising to mitigate urban and global warming, and toconserve fossil fuel consumption.
Standard

A Guide to Aircraft Turbine Engine Vibration Monitoring Systems

2015-12-20
CURRENT
ARP1839
This Aerospace Recommended Practice (ARP) is a general overview of typical airborne engine vibration monitoring (EVM) systems applicable to fixed or rotary wing aircraft applications, with an emphasis on system design considerations. It describes EVM systems currently in use and future trends in EVM development. The broader scope of Health and Usage Monitoring Systems, (HUMS) is covered in SAE documents AS5391, AS5392, AS5393, AS5394, AS5395, AIR4174. This ARP also contains the essential elements of AS8054 which remain relevant and which have not been incorporated into Original Equipment Manufacturers (OEM) specifications.
Standard

A Guide to Aircraft Turbine Engine Vibration Monitoring Systems

2014-05-01
HISTORICAL
AIR1839C
This Aerospace Information Report (AIR) is a general overview of typical airborne engine vibration monitoring (EVM) systems applicable to fixed or rotary wing aircraft applications, with an emphasis on system design considerations. It describes EVM systems currently in use and future trends in EVM development. The broader scope of Health and Usage Monitoring Systems, (HUMS ) is covered in SAE documents AS5391, AS5392, AS5393, AS5394, AS5395, AIR4174.
X