Refine Your Search




Search Results

Viewing 1 to 20 of 18728
Journal Article

1-g Suit Port Concept Evaluator 2008 Test Results

The Lunar Electric Rover (LER), which was formerly called the Small Pressurized Rover (SPR), is currently being carried as an integral part of the lunar surface architectures that are under consideration in the Constellation Program. One element of the LER is the suit port, which is the means by which crew members perform Extravehicular Activities (EVAs). Two suit port deliverables were produced in fiscal year 2008: a 1-g suit port concept evaluator for functional integrated testing with the LER 1-g concept vehicle and a functional and pressurizable Engineering Unit (EU). This paper focuses on the 1-g suit port concept evaluator test results from the Desert Research and Technology Studies (D-RATS) October 2008 testing at Black Point Lava Flow (BPLF), Arizona. The 1-g suit port concept evaluator was integrated with the 1-g LER cabin and chassis concepts.
Technical Paper

100-kWe Lunar/Mars Surface Power Utilizing the SP-100 Reactor with Dynamic Conversion

An integration study was performed coupling an SP-100 reactor with either a Brayton or Stirling power conversion subsystem. A power level of 100 kWe was selected for the study. The power system was to be compatible with both the lunar and Mars surface environment and require no site preparation. In addition, the reactor was to have integral shielding and be completely self-contained, including its own auxiliary power for start-up. Initial reliability studies were performed to determine power conversion redundancy and engine module size. Previous studies were used to select the power conversion optimum operating conditions (ratio of hot-side temperature to cold-side temperature). Results of the study indicated that either the Brayton or Stirling power conversion subsystems could be integrated with the SP-100 reactor for either a lunar or Mars surface power application.
Technical Paper

11 Rules of Design for Manufacturing when Producing Pre-Impregnated Carbon Fiber-Reinforced Plastic Components - an Application at SAAB Aerostructures

Carbon fiber-reinforced plastic (CFRP) is one of the most commonly used materials in the aerospace industry today. CFRP in pre-impregnated form is an anisotropic material whose properties can be controlled to a high level by the designer. Sometimes, these properties make the material hard to predict with regards to how the geometry affects manufacturing aspects. This paper describes eleven design rules originating from different guidelines that describe geometrical design choices and deals with manufacturability problems that are connected to them, why they are connected and how they can be minimized or avoided. Examples of design choices dealt with in the rules include double curvature shapes, assembly of uncured CFRP components and access for non-destructive testing (NDT). To verify the technical content and ensure practicability, the rules were developed by, inter alia, studying literature and performing case studies at SAAB Aerostructures.
Technical Paper

135 Days in Isolation and Confinement: The Hubes Simulation

The EUROMIR-95 flight was selected as model for the HUBES experiment: a similar duration (135 days), a similar crew (3 men), similar schedule organisation (8 hours work, 8 hours sleep, 8 hours off-duties), similar workload for the crew and the mission control (performance of scientific experiments), similar setup for communication and data processing, and similar layout of the MIR station, as the simulation was performed in the MIR simulator located at the Institute for BioMedical Problems (IBMP) in Moscow. The Scientific Programme of HUBES had been elaborated by integration of 31 experiments from more than 80 research proposals from Principal Investigators from Europe, USA and Russia, in domains of Physiology, Psychology, Operations and Technology.
Technical Paper

1967 Guide to Governmental Assurance Documentation: In the Areas of Quality, Reliability, Maintainability, Value Engineering, Safety, Human Factors, and Zero Defects

Governmental assurance documentation bibliography updated; new tabulation effective as of April 1, 1967. Latest revision indicated in all instances, but no attempt was made to list supplements or amendments. Department of Defense Index of Specifications and Standards (DODISS) published annually in three parts (alphabetic, numerical, and listing of Federal Supply Classification following unclassified documents.

2009 Ultimate GD&T Pocket Guide 2nd Ed

The Ultimate GD&T Pocket Guide explains the most common rules, symbols, and concepts used in geometric dimensioning and tolerancing. ...This one-of-a-kind reference guide includes over 100 detailed drawings to illustrate concepts, more than 40 charts for quick reference, explanations of each GD&T symbol and modifier and much more...Written by standards expert Alex Krulikowski, this valuable on-the-job reference clarifies how to interpret standard-compliant technical drawings that use ASME Y14.5-2009.

2016 Mobility Engineering Professionals Salary Survey

EXCLUSIVE MEMBER BENEFIT: 2016 MOBILITY ENGINEERING PROFESSIONAL SALARY SURVEY AND CALCULATOR Gain better insight into compensation practices: this salary survey is the only study its kind to explore levels and changes in compensation and employment for engineers and technical employees in the automotive, aerospace, and commercial vehicle industries. It benchmarks compensation levels based by geography, education, industry sector, experience, and managerial and budgetary responsibility. The full report is available to SAE International members by signing into your My SAE account and downloading it into your My Library area. Members also have full access to the updated online interactive salary calculator by visiting SAE’s website. Become a member of SAE International to access this exclusive benefit for free, or purchase it today. YOU BELONG HERE. Membership helps you succeed both personally and professionally. Join us today.

2018 Ultimate GD&T Pocket Guide 2nd Ed

The 2018 Ultimate GD&T Pocket Guide explains the most common rules, symbols, and concepts used in geometric dimensioning and tolerancing. This one-of-a-kind reference guide includes more than 100 detailed examples to illustrate concepts. Numerous charts for quick reference provide explanations of each GD&T symbol, modifier, and more. This valuable on-the-job resource clarifies how to interpret standard-compliant technical drawings that use ASME Y14.5-2018.
Journal Article

2019-2020 Reviewers

The SAE International Journal of Aerospace would like to thank and acknowledge the reviewers who have done peer reviews on articles over the last 2 years:
Technical Paper

250 °C SiC Power Module Package Design

In order to take full advantage of SiC, a high temperature package for power module using SiC devices was designed, developed, fabricated and tested. The details of the material selection and fabrication process are described. High temperature reliability test and power test shows that the package presented in this paper can perform well at the high junction temperature.
Technical Paper

270-Vdc/Hybrid 115-Vac Electric Power Generating System Technology Demonstrator

Sundstrand is investigating 270-Vdc/hybrid 115-Vac electrical power generating and distribution systems technology so as to be well prepared to offer such systems for future aircraft applications. The approach taken has been to design, build, and test a representative system that meets or exceeds the tightest of the performance standards as defined by miliary standards. This paper describes a single-channel, 120-kW hybrid system and presents some typical performance data. The dc bus supplies a 30-kVA, 400-Hz, 115-Vac inverter; constant power load banks of up to 150 kW; and a resistive load bank of up to 90 kW. System simulation studies indicated the potential for unstable operation due to the negative impedance of the constant power load in conjunction with the source ripple filter and the load EMI filters. Unstable voltage and current were observed in system testing when the magnitude of the source impedance was not sufficiently below that of the load impedance.
Technical Paper

270-Vdc/Hybrid 115-Vac Electric Power Generating System Technology Demonstrator Evolution to a Dual-Channel, More Electric Aircraft Technology Development Testbed

Sundstrand has been investigating 270-Vdc/hybrid 115-Vac electrical power generating systems (EPGS) technology in preparation for meeting the electrical power generating system (EPGS) requirements for future aircraft (1). Systems such as the one being investigated are likely to be suitable for the More-Electric Aircraft (MEA) concepts presently under industry and military study. The present Sundstrand single-channel testbed is being further expanded to better understand the electrical system performance characteristics and power quality requirements of an MEA in which traditional mechanical subsystems are replaced by those of a “more-electric” nature. This paper presents the most recent Sundstrand 270-Vdc system transient performance data, and describes the modifications being made to the 270-Vdc/hybrid 115-Vac testbed.
Technical Paper

2D Ice Shape Scaling for Helicopter Blade Profiles in Icing Wind Tunnel

Different Airbus Helicopters main rotor blade profiles were tested in different icing wind tunnels and for different icing conditions. One of the objectives of the accretion tests was to validate the use of 2D icing scaling laws established for fixed wing aircraft on helicopter blade profiles. Therefore, ice shapes resulting from tests with the same icing similarity parameters are compared to each other allowing the assessment of icing scaling laws for helicopter applications. This paper presents the icing scaling laws used at Airbus Helicopters on blade profiles, the different test set ups and test models and it presents the comparison of the ice shapes collected during the icing wind tunnel test campaigns.
Technical Paper

3D Countersink Measurement

Accurate measurement of countersinks in curved parts has always been a challenge. The countersink reference is defined relative to the panel surface which includes some degree of curvature. This curvature thus makes accurate measurements very difficult using both contact and 2D non-contact measurements. By utilizing structured light 3D vision technologies, the ability to very accurately measure a countersink to small tolerances can be achieved. By knowing the pose of the camera and projector, triangulation can be used to calculate the distance to thousands of points on the panel and countersink surface. The plane of the panel is then calculated using Random Sample Consensus (RANSAC) method from the dataset of points which can be adjusted to account for panel curvatures. The countersink is then found using a similar RANSAC method.
Technical Paper

3D Image Metrology for Lean Manufacturing

The need to improve quality while reducing cost in aerospace manufacturing is requiring new manufacturing methods and processes. Advanced technologies, such as 3D Image Metrology, offer great potential to lean manufacturing, if properly integrated into the production process. Over the last years 3D Image Metrology has developed a level of performance, which make it ideally suited for this purpose. These capabilities include the automatic in-process inspection of tools and parts before machining, machine control for highly accurate positioning during the machining operation, and in-process inspection during machining. This offers jig-less assembly, lower inventory, faster part throughput, and many more advantages.
Technical Paper

3D Re-Engineering: A Comprehensive Process for Solving Production Assembly Fit Problems

Dimensional Management (DM) is a methodology to predict and control the impact of variation on assembly from, fit, and function. Application of Dimensional Management tools and other modeling and simulation techniques are combined in a process called 3D Re-Engineering for application to existing production designs. Analytical techniques for predicting the impact of variation on assembly fit, and corresponding methods for controlling variation are presented, as used in a production environment for root cause corrective action on existing assembly fit problems. Assembly variation analysis is typically performed early in the product development phases, by coordinating datums, assembly sequences, assembly methods, and detail part tolerances across the product development team.