Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1D Modelling of Thermal Management of a Jet Trainer Aircraft

2023-03-07
2023-01-1005
Most of current jet aircraft circulate fuel on the airframe to match heat loads with available heat sink. The demands for thermal management in wide range of air vehicle systems are growing rapidly along with the increased mission power, vehicle survivability, flight speeds, and so on. With improved aircraft performance and growth of heat load created by Aircraft Mounted Accessory Drive (AMAD) system and hydraulic system, effectively removing the large amount of heat load on the aircraft is gaining crucial importance. Fuel is becoming heat transfer fluid of choice for aircraft thermal management since it offers improved heat transfer characteristics and offers fewer system penalties than air. In the scope of this paper, an AMESim model is built which includes airframe fuel and hydraulic systems with AMAD gearbox of a jet trainer aircraft. The integrated model will be evaluated for thermal performance.
Technical Paper

4000 F Oxidation Resistant Thermal Protection Materials

1966-02-01
660659
Coated refractory metals, coated and alloyed graphites, hafnium-tantalum alloys, refractory borides, and stabilized zirconias are considered for the 3600–4000 F high-velocity air environment. Only refractory borides and stabilized zirconias are indicated as offering long duration and reuse capabilities for such high-temperature utilization. Iridium, as coatings on substrates of either graphites or refractory metals, appears attractive for shorter times (less than 1 hr). Environmental evaluation and the need for a theoretical framework to enable the prediction of performance data for such materials are indicated to be major problems facing users and suppliers.
Technical Paper

8000 psi Hydraulic System Seals and Materials Test Program-A Progress Report

1985-10-01
851913
Flight control technology for 8000 psi has emerged almost simultaneously with new fire-resistant hydraulic fluids, such as MIL-H-83282 and CTFE. A proliferation of industry recommendations has resulted in a wide variety of mechanisms for solving associated actuator design problems, including tighter clearances, special seals, finishes, materials, and many others. As there are few common agreements on the issues, an extensive three-phase test program was undertaken to attempt to corroborate some of these approaches or suggest others that may be better or more cost effective.
Technical Paper

912iS Fuel Injected Aircraft Engine

2012-10-23
2012-32-0049
The 912 engine is a well known 4-cylinder horizontally opposed 4-stroke liquid-/air-cooled aircraft engine. The 912 family has a strong track record: 40 000 engines sold / 25 000 still in operation / 5 million flight hours annually. 88% of all light aircraft OEMs use Rotax engines. The 912iS is an evolution of the Rotax 912ULS carbureted engine. The “i” stands for electronic fuel injection which has been developed according to flight standards, providing a better fuel efficiency over the current 912ULS of more than 20% and in a range of 38% to 70% compared to other competitive engines in the light sport, ultra-light aircraft and the general aviation industry. BRP engineers have incorporated several technology enhancements. The fully redundant digital Engine Control Unit (ECU) offers a computer based electronic diagnostic system which makes it easier to diagnose and service the engine.
Technical Paper

A Brief Look at Engine Installations for Future Naval Aircraft

1974-02-01
740881
This paper discusses various engine installations in Naval aircraft, looking especially at their costs of maintenance. Fuel systems, fuel control systems, and several engine accessories are discussed for present and future engines. It is concluded that simple, reliable equipment is necessary to keep aircraft in the air instead of in maintenance areas on the ground.
Technical Paper

A Brief Survey of Wing Tip Devices for Drag Reduction

1993-09-01
932574
A short survey of wing tip geometries for drag reduction is presented. These devices have been divided into two broad categories of passive and active. The first category is made of fixed geometries, while the second group is made of those employing moving parts. The former group is further divided into planar and nonplanar designs. In every case, a brief explanation of the underlying logic is given. Altogether, more than fifteen completely different designs and over seventy references have been cited. Some of these designs, such as winglets, have been explored for many years and have proven to be very effective at reducing the induced drag at higher values of lift coefficient. Some others, such as wing tip turbines, have just begun to attract attention. Wing tip fuel tanks, not being solely employed for drag reduction, have not been included in this paper.
Technical Paper

A CFD Investigation on the Nozzle of Orifices Distributing in Different Space Layers

2008-04-14
2008-01-0948
A series calculation methodology from the injector nozzle internal flow to the fuel spray was applied to investigate the internal flow and spray of a nozzle whose orifices distributed in different space layers. The nozzle internal flow calculation using an Eulerian three-fluid model and a cavitation model was performed. The needle valve movement during the injection period was taken into account in this calculation. The transient data of spatial distributions of velocity, turbulent kinetic energy, dissipation rate, void fraction rate, etc. at the nozzle exit were extracted. These output data were transferred to the spray calculation, in which a primary break-up model was applied to the Discrete Droplet Model (DDM). The calculation results were compared with the results of the measurement data of spray. Predicted spray morphology and penetration showed good agreement with the experiental data.
Technical Paper

A Canister Fuel Pump for General Aviation Aircraft

1979-02-01
790624
A new family of canister-type fuel pumps for use on both rotary and fixed-wing aircraft in general aviation use will be described. The pump, which features a wet-brush DC motor, offers advantages on aircraft where ease of maintenance and minimum downtime is very important. Major features of the new design, pump performance, and maintenance cost savings will be discussed.
Technical Paper

A Closed Cycle, High-Altitude Rotary Engine for Unmanned Ozone Sampler

1992-08-01
921548
This paper documents the design and validation of a closed cycle propulsion system suitable for use on the Perseus A high altitude research aircraft. The atmospheric science community is expected to be the primary user of this aircraft with initial missions devoted to the study of ozone depletion and global warming. To date large amounts of funding are not available to the atmospheric science community, so to be useful, the aircraft must satisfy stringent cost and performance criteria. Among these, the aircraft has to be capable of carrying 50 kg of payload to altitudes of at least 25km, have a initial cost in the $1-2M range, be capable of launch from remote sites, and be available no later than 1994. These operational criteria set narrow boundaries for propulsion system cost, complexity, availability, reliability, and logistical support requirements.
Technical Paper

A Comparison of Fixed Wing Reusable Booster Concepts

1967-02-01
670384
Eight fixed-wing reusable horizontal landing booster point design concepts are presented and compared on the basis of weight, cost, technical difficulty, and availability date. The eight vehicle types considered are all basically two-stage systems with a lifting body reusable second stage, with all vehicles normalized to place 40,000 lbs. payload in orbit. All flight vehicles are fully recoverable and capable of flying back and landing at the launch site. Vehicle types discussed are vertical take-off horizontal landing rockets, sled launched horizontal take-off rockets, runway launched horizontal take-off rockets, air breathing first stages, combined air breathing and rocket first stages, oxidizer collection concepts, supersonic combustion ramjets, and in-flight refueling vehicles. Each of these vehicle types is depicted in the paper and its design and performance characteristics are discussed.
Technical Paper

A Comparison of the Prediction of Lightning Indirect Effects Using 2-D Analytical Tools with Measured Data from Two Composite Test Fixtures

2001-09-11
2001-01-2904
A comparison was done of the prediction capabilities for lightning indirect effects of two two-dimensional (2-D) computer codes using two graphite structural test fixtures. The two codes evaluated were an internal Boeing Method-of-Moments code and a commercially available Boundary Element method code. The codes were compared against each other and against test data. The purpose was to evaluate the prediction capabilities of both codes for use in predicting lightning indirect effects on internal components of graphite structure. Since 2-D codes are much easier to use than 3-D codes, they could be widely used in trade studies and design evaluations for lightning indirect effects protection of composite aircraft. The first code, REDIST, is a Method-of-Moments code developed in the 1980’s for use on the B-2. The REDIST code has short run times and is somewhat easier to use than the second code that was investigated.
Technical Paper

A Comparison of the Technical Properties of Arc Sprayed Versus Plasma Sprayed Nickel-5 Aluminum

1992-04-01
920931
Nickel-5 Aluminum (95 % Nickel-5 % Aluminum) is widely used in the aircraft engine industry. The excellent adhesive and cohesive strength of the coating, oxidation resistance and machinability make it an ideal material as both a bond coat for subsequent topcoats and as a build up material for dimensional restoration of worn or mismachined components. Plasma spraying has traditionally been the thermal spray process used to apply nickel aluminum, and the technical properties and performance characteristics are well documented. More recently, wire arc sprayed nickel aluminum is becoming widely used as an alternative to plasma spraying due to higher bond strengths, reproducibility, better machinability and more favorable economics. This paper presents the results of a testing program designed to compare the technical properties of arc sprayed versus plasma sprayed Nickel-5 Aluminum coatings.
Technical Paper

A Corrosion Inhibiting Coating for Structural Airframe Fasteners

1973-02-01
730902
Corrosion problems associated with using titanium fasteners to assemble aluminum airframe structures are reviewed. Data are presented describing the effectiveness of metallic platings and an aluminum filled organic based coating on fasteners to render the titanium-aluminum electrochemical couple inoperative. The aluminum enriched organic coating known as Hi-Kote 1 is shown to be more effective in minimizing corrosive attack on aluminum airframe structure in both saline and acidic environments. The effectiveness of Hi-Kote 1 in corrosion-fatigue tests of fastened aluminum structure is also reported.
Technical Paper

A Current Survey of Aircraft Fuel Gauging Systems

1967-02-01
670263
Fuel gaging systems in over 90% of small civil aircraft use the automotive float type sender with an electrical indicator. Considering such factors as dihedral, summing, temperature, variation in specific gravity of fuel used, and input voltage, the accuracy is approximately ±5% of full scale and ±10% of the reading. A more accurate system is highly desirable for weight control, flight planning, and possible c. g. consideration. Among other gaging systems available are improved float types at moderate costs, capacitive systems with good accuracy at comparatively high initial cost and increased maintenance, and a mass sensing system at moderate cost. The pros and cons of each system are discussed. Factors contributing to errors in readout and often overlooked are variations in height versus volume of fuel tanks because of manufacturing tolerances, and changes in shape and relative position of tanks under different loading when in flight.
Technical Paper

A Five-Point Program Designed to Eliminate Contamination and Corrosion of Fuel Tanks on Aircraft Using Jet Turbine Fuel

1965-02-01
650364
A general discussion of the problems resulting from the introduction of contaminated jet turbine fuel into integral fuel tanks and a five-point program designed to eliminate the contamination problem are presented. Some areas covered are: inspection of fuel sources for contamination to prevent contaminants from entering the aircraft fuel system; decontamination of fuel sources; inspection and decontamination of the aircraft fuel system; use of additives for the control of microorganisms; materials and methods, including a simple system for introducing the additives. The good and bad points of all fuel tank sealing and finishing systems presently in use are discussed, and a new finish system completely resistant to degradation by microorganisms is introduced. Simple means of controlling fuel quality entering the aircraft from uncontrolled sources are outlined.
Technical Paper

A Flexible Remanufacturing System-Grit Blasting and Plasma Spraying Aircraft Engine Parts

1985-02-01
850715
A FRS for grit blasting and plasma spraying is ideally suited for most companies that use the plasma process. FRS brings a capability of diversity to plasma spraying never before available. Different parts with different geometries requiring different coatings can now be grit blasted and plasma sprayed on the same line at will.
Technical Paper

A Fuel Systems Anti-Icing Concept for a Modern Commercial Jet Engine

1994-10-01
942191
The solution developed to solve problems relating to operation with cold fuel consists in: using only free calories available in the engine oil systems with no air heater being used, heating as necessary just the quantity of fuel used for engine control to prevent icing of the systems at takeoff, heating the fuel inside the aircraft tanks to ensure correct pumping during very long flights at high altitude.
Technical Paper

A Highly Compounded Two-Cycle Radial Light-Plane Engine

1966-02-01
660173
The authors review the requirements, describe some of the unusual design features and characteristics, and present the performance and weight data for the new McCulloch TSIR-5190 aircraft engine. This powerplant is a highly turbosupercharged, two-stroke cycle, direct fuel injection, liquid cooled, 5 cyl radial engine of 190 cu in. displacement. Maximum rated horsepower is 270 at 3600 rpm, and the brake specific fuel consumption, over the range from half-to full power, is below 0.5 lb/bhp-hr. The estimated “ready to fly” weight for the production engine is 365 lb. Some comparisons are made with currently available engines.
X