Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

2D Ice Shape Scaling for Helicopter Blade Profiles in Icing Wind Tunnel

2015-06-15
2015-01-2129
Different Airbus Helicopters main rotor blade profiles were tested in different icing wind tunnels and for different icing conditions. One of the objectives of the accretion tests was to validate the use of 2D icing scaling laws established for fixed wing aircraft on helicopter blade profiles. Therefore, ice shapes resulting from tests with the same icing similarity parameters are compared to each other allowing the assessment of icing scaling laws for helicopter applications. This paper presents the icing scaling laws used at Airbus Helicopters on blade profiles, the different test set ups and test models and it presents the comparison of the ice shapes collected during the icing wind tunnel test campaigns.
Technical Paper

2D Polar Assessment in Icing Wind Tunnel for iced Helicopter Blade Profiles

2015-06-15
2015-01-2127
A helicopter blade profile was tested in the DGA Aero-engine Testing's icing altitude test facility S1 in Saclay, France during the winter of 2013/2014. The airfoil was a helicopter main rotor OA312 blade profile made out of composite material and with a metallic erosion shield. Dry air and ice accretion tests have been performed in order to assess the iced airfoil's aerodynamic behaviour. Several icing conditions were tested up through Mach numbers around 0.6. This paper presents the test setup, the test model and some of the test results. The test results presented in this paper include the ice shapes generated as well as dry air and iced airfoil lift and drag curves (polars) which were obtained with the real ice shapes on the airfoil.
Technical Paper

3 Inch Ice Shapes, AB Initio

2023-06-15
2023-01-1434
The term “3 inch ice shapes” has assumed numerous definitions throughout the years. At times it has been used to generally characterize large glaze ice accretions on the major aerodynamic surfaces (wing, horizontal stabilizer, vertical stabilizer) for evaluating aerodynamic performance and handling qualities after a prolonged icing encounter. It has also been used as a more direct criterion while determining or enforcing sectional ice shape characteristics such as the maximum pinnacle height. It is the authors’ observation that over the years, the interpretation and application of this term has evolved and is now broadly misunderstood. Compounding the situation is, at present, a seemingly contradictory set of guidance among (and even within) the various international regulatory agencies resulting in an ambiguous set of expectations for design and certification specialists.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 35, Class 1, Grade 190, Fiber 1

2019-03-12
WIP
AMS3961/3A
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 35, Class 1, Grade 190, Fiber 1

2015-12-02
CURRENT
AMS3961/3
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 35, Class 1, Grade 190, Fiber 2

2015-12-02
CURRENT
AMS3961/2
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 35, Class 1, Grade 190, Fiber 2

2019-03-12
WIP
AMS3961/2A
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 38, Class 2, Grade 193, Style 3K-70-PW, Fiber 1

2015-12-02
CURRENT
AMS3961/1
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs, Type 38, Class 2, Grade 193, Style 3K-70-PW, Fiber 1

2019-03-12
WIP
AMS3961/1A
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of the base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
Technical Paper

3D Computational Methodology for Bleed Air Ice Protection System Parametric Analysis

2015-06-15
2015-01-2109
A 3D computer model named AIPAC (Aircraft Ice Protection Analysis Code) suitable for thermal ice protection system parametric studies has been developed. It was derived from HASPAC, which is a 2D anti-icing model developed at Wichita State University in 2010. AIPAC is based on the finite volumes method and, similarly to HASPAC, combines a commercial Navier-Stokes flow solver with a Messinger model based thermodynamic analysis that applies internal and external flow heat transfer coefficients, pressure distribution, wall shear stress and water catch to compute wing leading edge skin temperatures, thin water flow distribution, and the location, extent and rate of icing. In addition, AIPAC was built using a transient formulation for the airfoil wall and with the capability of extruding a 3D surface grid into a volumetric grid so that a layer of ice can be added to the computational domain.
Technical Paper

3D Immersed Boundary Methods for the Calculations of Droplet Trajectories towards Icing Application

2023-06-15
2023-01-1458
The in-flight ice accretion simulations are typically performed using a quasi-steady formulation through a multi-step approach. As the ice grows, the geometry changes, and an adaptation of the fluid volume mesh used by the airflow and droplet-trajectory solver is required. Re-meshing or mesh deformation are generally employed to do that. The geometries formed are often complex ice shapes increasing the difficulty of the re-meshing process, especially in three-dimensional simulations. Consequently, difficulties are encountered when trying to automate the process. Contrary to the usual body-fitted mesh approach, the use of immersed boundary methods (IBMs) allows solving, or greatly reducing, this problem by removing the mesh update, facilitating the global automation of the simulation. In the following paper, an approach to perform the airflow and droplet trajectory calculations for three-dimensional simulations is presented. This framework utilizes only immersed boundary methods.
Technical Paper

747 Flight Test Certification

1970-02-01
700828
The 747 flight test certification program was initiated with the first flight of the No. 1 airplane on February 9, 1969. Five test airplanes were used in an intensive test program involving 1443 flight hr and 36-1/4 airplane months, with the last certification flight on December 23, 1969. Full type certification approval was granted by the FAA on December 30, 1969 after a total of 10-2/3 months of flight testing. These statistics compare very well with the original program estimates, which were based on Boeing's extensive experience with development and certification testing of commercial transport airplanes. The success of this test program was not due to any great advancements in flight test techniques specifically for the 747, but was due to the tried and proven test methods developed during past certification programs at Boeing. This is not meant to imply that some new methods were not used, but to emphasize that test techniques evolve with experience.
Technical Paper

777 Wing and Engine Ice Protection System

1997-07-14
972260
This paper describes the wing and engine ice protection system, used on all 777 aircraft. The 777 ice protection system is unique in two ways: it has an advanced control system which minimizes aircraft power consumption. In addition, the system was procured by the prime contractor, Boeing, as a fully integrated subsystem from a single supplier.
Technical Paper

A Bayesian Approach to Non-Deterministic Hypersonic Vehicle Design

2001-09-11
2001-01-3033
Affordable, reliable endo- and exoatmospheric transportation, for both the military and commercial sectors, grows in importance as the world grows smaller and space exploration and exploitation increasingly impact our daily lives. However, the impact of disciplinary, operational, and technological uncertainties inhibit the design of the requisite hypersonic vehicles, an inherently multidisciplinary and non-deterministic process. Without investigation, these components of design uncertainty undermine the designers’ decision-making confidence. In this paper, the authors propose a new probabilistic design method, using Bayesian Statistics techniques, which allows assessment of the impact of disciplinary uncertainty on the confidence in the design solution. The proposed development of a two-stage reusable launch vehicle configuration highlights the means to first quantify the fidelity of the disciplinary analysis tools utilized, then propagate such to the vehicle system level.
Technical Paper

A Bioreactor System for the Nitrogen Loop in an Engineered Closed/Controlled Ecosystem

1996-07-01
961506
As space missions become longer in duration, the need to recycle waste into useful compounds rises dramatically. This problem can be addressed through the integration of human and plant modules in an ecological life support system. One of the waste streams leaving the human module is urine. In addition to the reclamation of water from urine, recovery of the nitrogen is important because it can be used as a nutrient for the plant module. A 3-step biological process for the conversion of nitrogenous waste (urea) to resource (nitrate) is proposed. Mathematical modeling was used to investigate the bioreactor system, with the goal of maximizing the ratio of performance to volume and energy requirements. Calculations show that separation of the two microbial conversions into two steps requires a smaller total reactor volume than combining them in a single bioreactor.
Technical Paper

A CFD Approach for Predicting 3D Ice Accretion on Aircraft

2011-06-13
2011-38-0044
In this work, a newly developed iced-aircraft modeling tool is applied to wings, engine inlets, and helicopter rotors. The tool is based on a multiscale-physics, unstructured finite-volume CFD approach and is applicable to general purpose aircraft icing applications. The present approach combines an Eulerian-based droplet-trajectory solver that is loosely coupled, in a time-accurate manner, to a surface-film and ice-evolution model. The goal of the model is to improve the fidelity of ice accretion modeling on dynamic geometries and for three-dimensional ice shapes typical of helicopter rotors. The numerical formulation is discussed and presented alongside 2D and 3D static validation cases, and dynamic helicopter rotors. The present results display good validation for predicting ice shape on a variety of geometries, and a strong initial capability of modeling ice forming on helicopters in forward flight.
Technical Paper

A CIRA 3D Ice Accretion Code for Multiple Cloud Conditions Simulations

2023-06-15
2023-01-1461
This work presents the implementation and validation efforts of a 3D ice accretion solver for aeronautical applications, MESS3D, based on the advanced Messinger model. The solver is designed to deal with both liquid phase and ice crystal cloud conditions. In order to extend the Messinger model to 3D applications, an algorithm for the water run-back distribution on the surface was implemented, in place of an air flow stagnation line search algorithm, which is straightforward in 2D applications, but more complicated in 3D. The developed algorithm aims to distribute the run-back water in directions determined by air pressure gradients or shear forces. The data structure chosen for MESS3D allows high flexibility since it can manage the necessary input solutions on surface grids coming from both structured and unstructured solvers, regardless the number of edges per surface cells.
Technical Paper

A Canadian Government Look at Airworthiness

1988-03-01
880935
The paper traces the development of the approach to airworthiness taken by Canadian government authorities from its origin through to current practices. It describes the Aerospace industry, the carriers and general aviation in statistical terms, indicates the impact of economic regulatory reform and suggests the way ahead for Canadian and other authorities lies in the attitude and methodologies practiced by the European authorities in their development of JARs. I SHOULD PERHAPS start this presentation with a short word about authorities. At the conclusion of a speech on safety regulation by Mr. Ronald Ashford of the UK Civil Aviation Authority, reported in Flight International of April 19, 1986, the following quotation from St. Paul to the Romans appeared: “You wish to have no fear of the authorities? Then continue to do right and you will have their approval, for they are God's agents working for your good”.
Technical Paper

A Comparative Assessment of High Speed Rotorcraft Concepts (HSRC): Reaction Driven Stopped Rotor/Wing Versus Variable Diameter Tiltrotor

1997-10-01
975548
The objective of this paper is to illustrate the methods and tools developed to size and synthesize a stopped rotor/wing vehicle using a reaction drive system, including how this design capability is incorporated into a sizing and synthesis tool, VASCOMP II. This new capability is used to design a vehicle capable of performing a V-22 escort mission, and a sized vehicle description with performance characteristics is presented. The resulting vehicle is then compared side-by-side to a variable diameter tiltrotor designed for the same mission. Results of this analysis indicate that the reaction-driven rotor concept holds promise relative to alternative concepts, but that the variable diameter tiltrotor has several inherent performance advantages. Additionally, the stopped rotor/wing needs considerably more development to reach maturity.
Technical Paper

A Comparison Exercise of Ice Accretion Simulations with 2D and 3D Solvers

2007-09-24
2007-01-3338
There are many different numerical approaches to ice accretion simulation. Little comparison has been made between those approaches to identify the best tool for a given application. This paper presents a comparison exercise between 2D codes (CANICE-BA and LEWICE) and 3D codes (CANICE3D-BA, LEWICE3D and FENSAP-ICE). It also compares the 3D first generation code (panel method with Lagrangian droplet trajectory tracking) CANICE3D-BA to the 3D second generation code (Navier-Stokes with Eulerian droplet tracking) FENSAP-ICE. The paper includes a description of the different methodologies. The first comparison exercise is done using three 2D cases for which experimental ice shapes are available. The second exercise addresses a water collection efficiency over an isolated tail for which experimental data is available. Finally, an ice accretion comparison is presented in a DLR4 wing-body configuration.
X