Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

A Filament Winding Concept to Improve the Strength and Stiffness Characteristics of Thermoplastic Large Injection Molded Composite Automotive Body Panels

1999-09-28
1999-01-3202
The automobile industry is seeing an increased need for the application of plastics and their derivatives in various forms such as fiber reinforced plastics, in the design and manufacture of various automotive structural components, to reduce weight, cost and improve fuel efficiency. A lot of effort is being directed at the development of structural plastics, to meet specific automotive requirements such as stiffness, safety, strength, durability and environmental standards and recyclability. This paper presents the concept of reinforcing large injection molded fiber reinforced body panels with structural uni-directional fibers (carbon, graphite, kevlar or fiber glass) wound in tension around the body panels by filament winding technique. Structural uni-directional fibers in tension wound around the fiber reinforced plastic inner body panels would place these body panels under compression.
Journal Article

Design of a 5.9 GHz High Directivity Planar Antenna Using Topology Optimization for V2V Applications

2017-03-28
2017-01-1691
A low profile high directivity antenna is designed to operate at 5.9 GHz for Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications to ensure connectivity in different propagation channels. Patch antennas are still an ongoing topic of interest due to their advantages: low profile, low cost, and ease of fabrication. One disadvantage of the patch antenna is low directivity which results in low range performance. In this paper, we introduce an efficient and novel way to improve the directivity of patch antenna using topology optimization and design of experiments (DoE). Numerical simulations are done using Method of Moments (MoM) technique in the commercially available tool, FEKO. We use global response surface method (GRSM) for double objectives topology optimization. Numerical results show a promising use of topology optimization and DoE techniques for the systematic design of high directivity of low profile single element patch antennas.
Technical Paper

Extruded Aluminum Crash Can Topology for Maximizing Specific Energy Absorption

2008-04-14
2008-01-1500
Specific energy absorption (SEA) is a quantitative measure of the efficiency of a structural member in absorbing impact energy. For an extruded aluminum crash can, SEA generally depends upon the topology of its cross-section. An investigation is carried out to determine the optimal cross-sectional topologies for maximizing SEA while considering manufacturing constrains such as, permissible die radii, gauges, etc. A comprehensive DOE type matrix of cross-sectional topologies has been developed by considering a wide variety of practical shapes and configurations. Since it is critical to include all feasible topologies, much thought and care has been given in developing this matrix. Detailed finite element crash analyses are carried out to simulate axial crushing of the selected crash cans topologies and the resulting specific energy absorption (SEA) is estimated for each case.
Technical Paper

Frequency FE-Based Weld Fatigue Life Prediction of Dynamic Systems

2017-03-28
2017-01-0355
In most aspects of mechanical design related to a motor vehicle there are two ways to treat dynamic fatigue problems. These are the time domain and the frequency domain approaches. Time domain approaches are the most common and most widely used especially in the automotive industries and accordingly it is the method of choice for the fatigue calculation of welded structures. In previous papers the frequency approach has been successful applied showing a good correlation with the life and damage estimated using a time based approach; in this paper the same comparative process has been applied but now extended specifically to welded structures. Both the frequency domain approach and time domain approach are used for numerically predicting the fatigue life of the seam welds of a thin sheet powertrain installation bracketry of a commercial truck submitted to variable amplitude loading. Predicted results are then compared with bench tests results, and their accuracy are rated.
Technical Paper

Optimization Driven Methodology to Improve the Body-in-White Structural Performance

2019-01-09
2019-26-0205
To evaluate the performance of Body-in-white design different attributes needs to be evaluated at various design levels. The current paper focus on evaluation and improvement of Body in white structure in detailed design stage of product development by identifying common performance contributors with multiple model inputs and design validation plans to achieve global performance of the structure. This paper explains the methodology to evaluate the results of Initial Analysis and design iterations for multiple Design verification plans individually and also combined. Sensitivity study is carried out by Multi model DOE (Design of experiments) optimization method to identify the global performance effecting contributors for each design validation plan. The methodology could generate a design which improve stiffness on local joinery sections and also global structural stiffness parameters in both static and dynamic condition by keeping the overall mass in acceptable range.
Technical Paper

Springback Study on a Stamped Fender Outer

2003-03-03
2003-01-0685
Springback study on a Dodge Ram fender outer panel is detailed in this paper. A simple measurement fixture is designed for the panel, wherein non-contact laser scan technology is applied The measurement data are compared with the original CAD design surface and deviation contour maps are obtained. Consistency of measurement is studied at different sections among three samples. Details of FEA simulations are outlined. The comparison between measurement and simulation prediction is summarized. A method to describe the consistency of measurement and the accuracy of simulation prediction is proposed. The targets for measurement consistency and simulation accuracy are verified. A sensitivity analysis is also performed to investigate various simulation input parameters.
X