Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

A Design Study to Determine the Impact of Various Parameters on Door Acoustics

2003-05-05
2003-01-1430
Once the design of a door sheetmetal and accessories is confirmed, the acoustics of the door system depends on the sound package assembly. This essentially consists of a watershield which acts as a barrier and a porous material which acts as an absorber. The acoustical performance of the watershield and the reverberant sound build-up in the door cavity control the performance. This paper discusses the findings of a design study that was developed based on design of experiments (DOE) concepts to determine which parameters of the door sound package assembly are important to the door acoustics. The study was based on conducting a minimum number of tests on a five factor - two level design that covered over 16 different design configurations. In addition, other measurements were made that aided in developing a SEA model which is also compared with the findings of the results of the design study.
Technical Paper

A Hybrid Method for Vehicle Axle Noise Simulation with Experimental Validation

2003-05-05
2003-01-1707
Recently, many authors have attempted to represent an automobile body in terms of experimentally derived frequency response functions (FRFs), and to couple the FRFs with a FEA model of chassis for performing a total system dynamic analysis. This method is called Hybrid FEA-Experimental FRF method, or briefly HYFEX. However, in cases where the chassis model does not include the bushing models, one can not directly connect the FRFs of the auto body to the chassis model for performing a total system dynamic analysis. In other cases when the chassis model includes the bushings, the bushing dynamic rates are modeled as constant stiffness rather than frequency dependent stiffness, the direct use of the HYFEX method will yield unsatisfactory results. This paper describes how the FRF's of the auto body and the frequency dependent stiffness data of the bushings can be combined with an appropriate mathematical formulation to better represent the dynamic characteristics of a full vehicle.
Technical Paper

A New Way of Electrical/Electronic Systems Endurance Testing of Vehicles in a Real World Environment Prior to Production Launch

2001-03-05
2001-01-1101
With the increasing emphasis on Systems Engineering, there is a need to ensure that Electrical/Electronic (E/E) Systems Endurance Testing of vehicles, in a real world environment, prior to Production Launch, is performed in a manner and at a technological level that is commensurate with the high level of electronics and computers in contemporary vehicles. Additionally, validating the design and performance of individual standalone electronic systems and modules “on the bench” does not guarantee that all the permutations and combinations of real-world hardware, software, and driving conditions are taken into account. Traditional Proving Ground (PG) vehicle testing focuses mainly on powertrain durability testing, with only a simple checklist being used by the PG drivers as a reminder to cycle some of the electrical components such as the power window switches, turn signals, etc.
Technical Paper

Axle Imbalance Measurement and Balancing Strategies

2007-05-15
2007-01-2238
This paper summarizes a study on axle balance measurement and balancing strategies. Seven types of axles were investigated. Test samples were randomly selected from products. Two significant development questions were set out to be answered: 1) What is the minimum rotational speed possible in order to yield measured imbalance readings which correlated to in-vehicle imbalance-related vibration. What is the relationship between the measured imbalance and rotational speed. To this end, the imbalance level of each axle was measured using a test rig with different speeds from 800 to 4000 rpm with 200 rpm increments. 2) Is it feasible to balance axle sub-assemblies only and still result in a full-assembly that satisfies the assembled axle specification? To this end, the sub-assemblies were balanced on a balance machine to a specified level. Then with these balanced sub-assemblies, the full assemblies were completed and audited on the same balance test rig in the same way.
Technical Paper

Development of an Experimental FRF-Based Substructuring Model to Forward Predict the Effects of Beam Axle Design Modifications on Passenger Vehicle Axle Whine

2007-05-15
2007-01-2237
This paper describes the process used to develop an experimental model with forward prediction capabilities for passenger vehicle axle whine performance, focusing initially on beam axle design modifications. This process explains how experimental Transfer Path Analysis (TPA), Running Modes Analysis (RMA) and Modal Analysis were used along with an experimental FRF-Based Substructuring (FBS) model. The objective of FBS techniques is to predict the dynamic behavior of complex structures based on the dynamic properties of each component of the structure. The FBS model was created with two substructures, the body/suspension and the empty rear beam axle housing. Each step in the creation of the baseline FBS model was correlated, and the forward predictive capability was verified utilizing an experimental modification to the beam axle structure.
Technical Paper

Estimation Of Damping Loss Factors By Using The Hilbert Transform And Exponential Average Method

2001-04-30
2001-01-1408
The damping loss factor of a structural panel plays a significant role in its vibro-acoustic performance. The objective of this paper is to present a new procedure for evaluating the damping loss factors of these panels. Traditionally, the damping loss factors are determined by using the decay rate of the decay curves which are experimentally obtained from the structure. However, this is time consuming and the accuracy is limited by fluctuations in the decay curve. In this paper, the envelope signal of each decay curve is determined through its Hilbert transform, and the remaining small fluctuations in the envelope signal are further smoothed out by the exponential average method. Finally, the damping loss factor is estimated based on the smoothed envelope signal of each decay curve. A computer program has been developed to implement this procedure. It is shown that this procedure improves both accuracy and efficiency of the decay rate method for estimating damping loss factor.
Technical Paper

Grammatical Evolution Based Tool for Predicting Multivariable Response Surface for Laser Lap Welding

2008-04-14
2008-01-1372
The problem of predicting the quality of weld is critical to manufacturing. A great deal of data is collected under multiple conditions to predict the quality. The data generated at Daimler Chrysler has been used to develop a model based on grammatical evolution. Grammatical Evolution Technique is based on Genetic Algorithms and generates rules from the data which fit the data. This paper describes the development of a software tool that enables the user to choose input variables such as the metal types of top and bottom layers and their thickness, intensity and speed of laser beam, to generate a three dimensional map showing weld quality. A 3D weld quality surface can be generated in response to any of the two input variables picked from the set of defining input parameters. This tool will enable the user to pick the right set of input conditions to get an optimal weld quality. The tool is developed in Matlab with Graphical User Interface for the ease of operation.
Technical Paper

Information Flow Analysis for Air Bag Sensor Development

2000-03-06
2000-01-1388
A statistical theory is used to quantify the amount of information transmitted from a transducer (i.e., accelerometer) to the air bag controller during a vehicle crash. The amount of information relevant to the assessment of the crash severity is evaluated. This quantification procedure helps determine the effectiveness of different testing conditions for the calibration of sensor algorithms. The amount of information in an acceleration signal is interpreted as a measure of the ability to separate signals based on parameters that are used to assess the severity of an impact. Applications to a linear spring-mass model and to actual crash signals from a development vehicle are presented. In particular, the comparison of rigid barrier (RB) and offset deformable barrier (ODB) testing modes is analyzed. Also, the performance of front-mounted and passenger compartment accelerometers are compared.
Technical Paper

Model Based Development and Auto Testing: A Robust Approach for Reliable Automotive Software Development

2006-04-03
2006-01-1420
Automotive electronics and software is getting complex day by day. More and more features and functions are offered and supported by software in place of hardware. Communication is carried out on the CAN bus instead of hard wired circuits. This architectural transition facilitates lots of flexibility, agility and economy in development. However, it introduces risk of unexpected failures due to insufficient testing and million of possible combinations, which can be created by users during the life time of a product. Model based development supports an effective way of handling these complexities during simulation and also provide oracle for its validation. Based on priorities and type of applications, test vectors can be auto generated and can be used for formal verification of the models. These auto-generated test vectors are valuable assets in testing and can be effectively reused for target hardware (ECU) verification.
Technical Paper

Model Based Reusable and Reliable Software Validation for Functional Coverage using Virtual ECUs

2007-04-16
2007-01-1742
In embedded software world, development and testing are becoming far more complex with growing functionality and fail safe strategies. As a result of that, model-based software development is getting increasingly popular in capturing the functional requirements and auto generating the code from these validated models to avoid any functional deficiency. However, the complexity in the model may not be correctly interpreted by the code generation tool and may result to an incorrect code behavior. In this paper, a methodology has been proposed and implemented to validate the generated code against the models. Simulation test scripts are recorded in the modeling environment to generate the desired set of test inputs. These input scripts are designed to get complete transition and state exposure to maximize the functional coverage. With these test scripts, expected outputs are recorded for downstream validation in the simulation environment with mature models.
Technical Paper

Multi-Mannequin Coordination and Communication in Digital Workcells

2003-06-17
2003-01-2197
It is commonly known that in an automotive manufacturing assembly line several workers perform either a common task or a number of different tasks simultaneously, and there is a need to represent such a multi-worker operation realistically in a digital environment. In the past years, most digital human modeling applications were limited only in a single worker case. This paper presents how to simulate multi-worker operations in a digital workcell. To establish an effective communication and interaction between the mannequins, some existing commercial software package has provided a digital input/output mechanism. The motion for each mannequin is often programmed independently, but can be interrupted anytime by the other digital human models or devices via a communication channel.
Technical Paper

Side Window Buffeting Characteristics of an SUV

2004-03-08
2004-01-0230
Buffeting is a wind noise of high intensity and low frequency in a moving vehicle when a window or sunroof is open and this noise makes people in the passenger compartment very uncomfortable. In this paper, side window buffeting was simulated for a typical SUV using the commercial CFD software Fluent 6.0. Buffeting frequency and intensity were predicted in the simulations and compared with the corresponding experimental wind tunnel measurement. Furthermore, the effects of several parameters on buffeting frequency and intensity were also studied. These parameters include vehicle speed, yaw angle, sensor location and volume of the passenger compartment. Various configurations of side window opening were considered. The effects of mesh size and air compressibility on buffeting were also evaluated. The simulation results for some baseline configurations match the corresponding experimental data fairly well.
Technical Paper

Stamping Simulation in Pentium PC and Linux Environment

2003-03-03
2003-01-0691
This paper describes the performance improvement and cost savings achieved by the Stamping Technology Department at DaimlerChrysler Corporation (Chrysler group), in migrating from Unix workstations with RISC technology to Linux PCs with Intel Pentium technology. Performance comparisons of various engineering applications running on these two system configurations are analyzed. The major aspects such as hardware configuration, operating system, software availability, compatibility, reliability, accuracy and consistency of simulation results are discussed. The improvement in computing speed and deviations in simulation results between MPP LS-Dyna and SMP LS-Dyna are presented.
Technical Paper

Structure Borne Insertion Loss of Sound Package Components

2003-05-05
2003-01-1549
Typical automotive sound package components are usually characterized by their absorption coefficients and their acoustic power-based insertion loss. This insertion loss (IL) is usually obtained by subtracting the transmission loss (TL) of a bare flat steel plate from the TL of the same plate covered with the trim material. While providing useful information regarding the performance of the component, air-borne insertion loss is based solely on acoustic excitations and thus provides very little information about the structure-borne performance of the component. This paper presents an attempt to introduce a standard procedure to define the power-based structure-borne insertion loss of sound package components. A flat steel plate is excited mechanically using a shaker. Different carpet constructions are applied on the plate and tested. Based on velocity measurements, a force transducer and intensity probe, the mechanical input and the acoustic radiated power are obtained.
Technical Paper

Test Methodology to Reduce Axle Whine in a 4WD Vehicle

2005-05-16
2005-01-2403
With the ever increasing popularity of SUV automobiles, studies involving driveline specific problems have grown. One prevalent NVH problem is axle whine associated with the assembled motion transmission error (MTE) of an axle system and the corresponding vibration/acoustic transfer paths into the vehicle. This phenomenon can result in objectionable noise levels in the passenger compartment, ensuing in customer complaints. This work explores the methodology and test methods used to diagnose and solve a field axle whine problem, including the use of cab mount motion transmissibility path analysis, running modes and a detailed MTE best-of-the-best (BOB)/worst-of-the-worst (WOW) study. The in-vehicle axle whine baseline measurements including both vehicle dynamometer and on-road test conditions, along with the countermeasures of axle whine fixes are identified and presented in this paper.
Technical Paper

USCAR Traction Test Methodology for Traction-CVT Fluids

2002-10-21
2002-01-2820
A traction test machine, developed for evaluation of traction-CVT fluids for the automotive consortium, USCAR, provides precision traction measurements to stresses up to 4 GPa. The high stress machine, WAMhs, provides an elliptical contact between AISI 52100 steel roller and disc specimens. Machine stiffness and positioning technology offer precision control of linear slip, sideslip and spin. A USCAR traction test methodology includes entrainment velocities from 2 to 10 m/sec and temperatures from -20°C to 140°C. The purpose of the USCAR machine and test methodology is to encourage traction fluid development and to establish a common testing approach for fluid qualification. The machine utilizes custom software, which provides flexibility to conduct comprehensive traction fluid evaluations.
Technical Paper

Understanding Laboratory Versus In-Vehicle Performance of Sprayable and Sheet Applied Damping Materials

2001-04-30
2001-01-1465
Liquid spray applied damping materials have potential advantages over conventional sheet damping materials in automotive body panel vibration applications. In order to understand the acoustical impact, a laboratory based NVH study was conducted to compare the damping and stiffness performance characteristics of various sprayable damping materials versus the production damping treatment. Based on this comparison, a criteria was developed to select potentially viable sprayable damping materials for vehicle testing. In-vehicle tests were also performed and compared to the laboratory findings to understand how well the results correlate. This paper discusses a criteria for selecting sprayable damping materials based on bench-top tests for vehicle applications, and the potential benefits of sprayable materials.
Technical Paper

Validation of Vehicle NVH Performance using Experimental Modal Testing and In-Vehicle Dynamic Measurements

2007-05-15
2007-01-2320
NVH targets for future vehicles are often defined by utilizing a competitive benchmarking vehicle in conjunction with an existing production and/or reference vehicle. Mode management of full vehicle modes is one of the most effective and significant NVH strategies to achieve such targets. NVH dynamic characteristics of a full vehicle can be assessed and quantified through experimental modal testing for determination of global body mode resonance frequency, damping property, and mode shape. Major body modes identified from full vehicle modal testing are primarily dominated by the vehicle's body-in-white structure. Therefore, an estimate of BIW modes from full vehicle modes becomes essential, when only full vehicle modes from experimental modal testing exist. Establishing BIW targets for future vehicles confines the fundamental NVH behavior of the full vehicle.
X