Refine Your Search

Topic

Author

Search Results

Technical Paper

A Design Study to Determine the Impact of Various Parameters on Door Acoustics

2003-05-05
2003-01-1430
Once the design of a door sheetmetal and accessories is confirmed, the acoustics of the door system depends on the sound package assembly. This essentially consists of a watershield which acts as a barrier and a porous material which acts as an absorber. The acoustical performance of the watershield and the reverberant sound build-up in the door cavity control the performance. This paper discusses the findings of a design study that was developed based on design of experiments (DOE) concepts to determine which parameters of the door sound package assembly are important to the door acoustics. The study was based on conducting a minimum number of tests on a five factor - two level design that covered over 16 different design configurations. In addition, other measurements were made that aided in developing a SEA model which is also compared with the findings of the results of the design study.
Technical Paper

A Grammatical Evolution Approach to System Identification of Laser Lap Welding

2006-04-03
2006-01-1614
Laser lap welding quality is a non-linear response based on a host of categorical and numeric material and process variables. This paper describes a Grammatical Evolution approach to the structure identification of the laser lap welding process and compares its performance with linear regression and a neuro-fuzzy inference system.
Technical Paper

A New Way of Electrical/Electronic Systems Endurance Testing of Vehicles in a Real World Environment Prior to Production Launch

2001-03-05
2001-01-1101
With the increasing emphasis on Systems Engineering, there is a need to ensure that Electrical/Electronic (E/E) Systems Endurance Testing of vehicles, in a real world environment, prior to Production Launch, is performed in a manner and at a technological level that is commensurate with the high level of electronics and computers in contemporary vehicles. Additionally, validating the design and performance of individual standalone electronic systems and modules “on the bench” does not guarantee that all the permutations and combinations of real-world hardware, software, and driving conditions are taken into account. Traditional Proving Ground (PG) vehicle testing focuses mainly on powertrain durability testing, with only a simple checklist being used by the PG drivers as a reminder to cycle some of the electrical components such as the power window switches, turn signals, etc.
Technical Paper

Application of Multi-Parameter and Boundary Mannequin Techniques in Automotive Assembly Process

2003-06-17
2003-01-2198
This paper deals with the multi-parameter and boundary mannequin techniques in creating human models in automotive applications. The concepts and applications of single-parameter, multiple parameter and boundary mannequin method are discussed respectively to clarify certain confusion. Emphasis is put on how to create boundary mannequins for a specific application, which may have been puzzling many engineers in practical applications. The authors would like to share their experience in using the digital human modeling software and make discussions on some common issues. A number of case studies from typical automotive manufacturing assembly operations are also presented to demonstrate the usage of the multi-parameter and boundary mannequin techniques.
Technical Paper

Chrysler 45RFE a New Generation Light Truck Automatic Transmission

1999-03-01
1999-01-1260
The 45RFE is a new generation electronically controlled rear wheel drive automatic transmission. It employs real-time feedback, closed-loop modulation of shift functions to achieve outstanding shift quality and to meet demanding durability goals. It uses no shift valves; all friction element applications are effected with high-flow electro-hydraulic solenoid valves. A unique gear train arrangement of three planetary carriers allows all sun gears and annulus gears to have the same number of teeth respectively and use a common pinion gear in all carriers, resulting in significant manufacturing simplification. The three-planetary system is designed for four forward ratios of 3.00, 1.67, 1.00 and 0.75 and one reverse gear ratio equal to the low gear ratio. A fifth ratio of 1.50 is used only in certain kick-down shift sequences for highway passing. A sixth forward ratio, an additional overdrive ratio of 0.67, is available in the hardware.
Technical Paper

Computer Aided Simulations in Machining Applications

2005-04-11
2005-01-0518
Computer applications have been widely used to assist product design. The successes and sophistication of computer aided engineering (CAE) techniques are respectfully recognized in this field. CAE applications in the manufacturing area however are still developing, although the manufacturing community is increasingly starting to pay attentions to computer simulations in its daily workings. This paper will briefly introduce some of these applications and promote awareness of computer simulations in manufacturing area. It contains four main sections: finite element analysis (FEA) in machining fixture design, FEA applications in component assembly, machining process simulations and machining vibrations in the milling operation. Each section comes with a practical case study, potential benefits are identified and conclusions are presented by using an integrated design and analysis approach.
Technical Paper

Computer-Aided Vehicle Design and Packaging Using Standard Naming Design Methodology

2003-03-03
2003-01-1302
Vehicle design and packaging is a repetitive and tedious process that involves frequent engineering and design changes. To improve design efficiency, a standard naming vehicle design methodology is proposed in this paper. For the geometric or the functional object used in the vehicle context, a standard name is assigned and also used as a unique object feature through its life cycle. With the proposed standard naming design methodology, the engineering knowledge can be efficiently embedded into the CAD design, and hence, vehicle design can be executed in a more automated fashion. Work case of the standard naming design methodology is illustrated by a vehicle design and packaging application using CATIA V5.
Technical Paper

Development of Portable Self Contained Phase Shifting Digital Shearography for Composite Material Testing

2005-04-11
2005-01-0590
The use of composite materials in the automotive industry has become increasingly widespread. With this increase in use, techniques for non-destructive testing (NDT) have become more and more important. Various optical NDT inspective methods such as holography, moiré techniques, and shearography have been used for material testing. Among these methods, shearography appears to be most practical. Shearography has a simple optical setup due to its “self-referencing” system, and it is relatively insensitive against rigid-body motions. Measurements of displacement derivatives, and thus strain directly, rather than the displacement itself is achieved through this method. Therefore shearography detects defects in objects by correlating anomalies of strain which are usually easier than correlating the anomalies of the displacement itself, as in holography. To date shearography has shown potential as a NDT tool for identifying defects in small structures.
Technical Paper

Effects of Different Vehicle Parameters on Car to Car Frontal Crash Fatality Risk Estimated through a Parameterized Model

2006-04-03
2006-01-1134
For the purposes of analyzing and understanding the general effects of a set of different vehicle attributes on overall crash outcome a fleet model is used. It represents the impact response, in a one-dimensional sense, of two vehicle frontal crashes, across the frontal crash velocity spectrum. The parameters studied are vehicle mass, stiffness, intrusion, pulse shape and seatbelt usage. The vehicle impact response parameters are obtained from the NCAP tests. The fatality risk characterization, as a function of the seatbelt use and vehicle velocity, is obtained from the NASS database. The fatality risk is further mapped into average acceleration to allow for evaluation of the different vehicle impact response parameters. The results indicate that the effects of all the parameters are interconnected and none of them is independent. For example, the effect of vehicle mass on fatality risk depends on seatbelt use, vehicle stiffness, available crush, intrusion and pulse shape.
Technical Paper

Experimental and Modeling Evaluations of a Vacuum-Insulated Catalytic Converter

1999-10-25
1999-01-3678
Vehicle evaluations and model calculations were conducted on a vacuum-insulated catalytic converter (VICC). This converter uses vacuum and a eutectic PCM (phase-change material) to prolong the temperature cool-down time and hence, may keep the converter above catalyst light-off between starts. Tailpipe emissions from a 1992 Tier 0 5.2L van were evaluated after 3hr, 12hr, and 24hr soak periods. After a 12hr soak the HC emissions were reduced by about 55% over the baseline HC emissions; after a 24hr soak the device did not exhibit any benefit in light-off compared to a conventional converter. Cool-down characteristics of this VICC indicated that the catalyst mid-bed temperature was about 180°C after 24hrs. Model calculations of the temperature warm-up were conducted on a VICC converter. Different warm-up profiles within the converter were predicted depending on the initial temperature of the device.
Technical Paper

Grammatical Evolution Based Tool for Predicting Multivariable Response Surface for Laser Lap Welding

2008-04-14
2008-01-1372
The problem of predicting the quality of weld is critical to manufacturing. A great deal of data is collected under multiple conditions to predict the quality. The data generated at Daimler Chrysler has been used to develop a model based on grammatical evolution. Grammatical Evolution Technique is based on Genetic Algorithms and generates rules from the data which fit the data. This paper describes the development of a software tool that enables the user to choose input variables such as the metal types of top and bottom layers and their thickness, intensity and speed of laser beam, to generate a three dimensional map showing weld quality. A 3D weld quality surface can be generated in response to any of the two input variables picked from the set of defining input parameters. This tool will enable the user to pick the right set of input conditions to get an optimal weld quality. The tool is developed in Matlab with Graphical User Interface for the ease of operation.
Technical Paper

Injection Molded, Extruded-In-Color Film Fascia

2003-03-03
2003-01-1126
A new multi-layer co-extruded in-color Ionomer film is developed to provide an alternative decoration process to replace paint on Dodge Neon Fascias. The Ionomer film provides a high-gloss “class-A” surface in both non-metallic and metallic colors that match the car body paint finish. Using the Ionomer film to decorate fascias reduces cost; eliminates VOCs; increases manufacturing flexibility and improves performance (weatherability and durability). The molding process consists of thermoforming a film blank and injection molding Polypropylene or TPO behind the film. The paper will include the background, the benefits, the technology development objectives, the film materials development, tooling optimization, film fascia processing (co-extrusion; thermoforming and injection molding) and validation testing of the film.
Technical Paper

Laminated Steel Forming Modeling Techniques and Experimental Verifications

2003-03-03
2003-01-0689
Laminated steel sheets sandwiched with a polymer core are increasingly used for automotive applications due to their vibration and sound damping properties. However, it has become a major challenge in finite element modeling of laminated steel structures and forming processes due to the extremely large differences in mechanical properties and in the gauges of the polymer core and the steel skins. In this study, circular cup deep drawing and V-bending experiments using laminated steels were conducted in order to develop a modeling technique for laminate forming processes. The effectiveness of several finite element modeling techniques was investigated using the commercial FEM code LS-Dyna. Furthermore, two production parts were selected to verify the modeling techniques in real world applications.
Technical Paper

Large Scale High Speed Dynamic Crush Tests Using Two Sleds

2005-04-11
2005-01-1418
It is often necessary to dynamically test a big vehicle part such as a rail tip at component level in high speed. Such a big part can be crush tested dynamically using two sled carriers. The methodology is shown and discussed here, and equations are developed to help determine required parameters such as sled velocity and weights. Test results using a truck rail tip are shown and compared to full vehicle test results for correlation.
Technical Paper

Light Truck Frame Joint Stiffness Study

2003-03-03
2003-01-0241
Truck frame structural performance of body on frame vehicles is greatly affected by crossmember and joint design. While the structural characteristics of these joints vary widely, there is no known tool currently in use that quickly predicts joint stiffness early in the design cycle. This paper will describe a process used to evaluate the structural stiffness of frame joints based on research of existing procedures and implementation of newly developed methods. Results of five different joint tests selected from current production body-on-frame vehicles will be reported. Correlation between finite element analysis and test results will be shown. Three samples of each joint were tested and the sample variation will be shown. After physical and analytical testing was completed, a Design of Experiments approach was implemented to evaluate the sensitivity of joints with respect to gauge and shape modification.
Technical Paper

Lightweight Magnesium Intensive Body Structure

2006-04-03
2006-01-0523
This paper describes a lightweight magnesium intensive automobile body structure concept developed at DaimlerChrysler to support a high fuel-efficiency vehicle project. This body structure resulted in more than 40% weight reduction over a conventional steel structure while achieving significantly improved structural performance as evaluated through CAE simulations. A business case analysis was conducted and showed promising results. One concept vehicle was built for the purpose of demonstrating concept feasibility. The paper also identifies areas for further development to enable such a vehicle to become a production reality at a later time.
Technical Paper

Measurement of Transfer Case Imbalance

2005-05-16
2005-01-2297
Different methodologies to test transfer case imbalance were investigated in this study. One method utilized traditional standard single plane and two plane methods to measure the imbalance of the transfer case when running it on a dynamic balance machine at steady RPM, while a second method utilized accelerometers and a laser vibrometer to measure vertical vibration on the transfer case when running it on a dynamic balance machine in 4 Hi open mode during a run up from 1000 to 4000 RPM with a 40 RPM difference between the input and output shaft speeds. A comparison of all of the measurements for repeatability and accuracy was done with the goal of determining an appropriate and efficient method that generates the most consistent results. By using the traditional method, the test results were not repeatable. This may be due to the internal complexity of transfer cases. With the second method, good correlation between the measurements was obtained.
Technical Paper

Modal Overlap at Low Frequencies - A Stochastic Approach for Vehicle System Modal Management

2003-05-05
2003-01-1612
In the early stages of a vehicle program, it is a common practice to set target ranges for the global body, suspension and powertrain modes. This modal management process allows engineers to avoid potential noise and vibration problems stemming from strong overlap of major global modes. Before the first prototype hardware is built, finite element models of the body, suspension and powertrain are usually exercised to compare predicted versus targeted ranges of the major system modes in the form of a modal management chart. However, uncertainty associated with the design parameters, manufacturing process and other sources can lead to a major departure from the design intent when the first hardware prototype is built. In this study, a first order reliability method is used to predict variance of the eigen values due to parameter uncertainties. This allows the CAE engineers to add a “three sigma” bound on the eigen values reported in the modal management chart.
Technical Paper

Multi-Disciplinary Aerodynamics Analysis for Vehicles: Application of External Flow Simulations to Aerodynamics, Aeroacoustics and Thermal Management of a Pickup Truck

2007-04-16
2007-01-0100
During the design process for a vehicle, the CAD surface geometry becomes available at an early stage so that numerical assessment of aerodynamic performance may accompany the design of the vehicle's shape. Accurate prediction requires open grille models with detailed underhood and underbody geometry with a high level of detail on the upper body surface, such as moldings, trim and parting lines. These details are also needed for aeroacoustics simulations to compute wall-pressure fluctuations, and for thermal management simulations to compute underhood cooling, surface temperatures and heat exchanger effectiveness. This paper presents the results of a significant effort to capitalize on the investment required to build a detailed virtual model of a pickup truck in order to simultaneously assess performance factors for aerodynamics, aeroacoustics and thermal management.
Technical Paper

Multi-Mannequin Coordination and Communication in Digital Workcells

2003-06-17
2003-01-2197
It is commonly known that in an automotive manufacturing assembly line several workers perform either a common task or a number of different tasks simultaneously, and there is a need to represent such a multi-worker operation realistically in a digital environment. In the past years, most digital human modeling applications were limited only in a single worker case. This paper presents how to simulate multi-worker operations in a digital workcell. To establish an effective communication and interaction between the mannequins, some existing commercial software package has provided a digital input/output mechanism. The motion for each mannequin is often programmed independently, but can be interrupted anytime by the other digital human models or devices via a communication channel.
X