Refine Your Search

Search Results

Technical Paper

Artificial Control of Diesel Spray and Flame Feature by using Dual-component Fuel

2015-09-01
2015-01-1916
Fuel design approach has been proposed as the control technique of spray and combustion processes in diesel engine to improve thermal efficiency and reduce exhaust emissions. In order to kwow if this approach is capable of controlling spray flame structure and interaction between the flame and a combustion chamber wall, the present study investigated ignition and flame characteristics of dual-component fuels, while varying mixing fraction, fuel temperature and ambient conditions. Those characteristics were evaluated through chemiluminescence photography and luminous flame photography. OH radical images and visible luminous flame images were analyzed to reveal flame shape aspect ratio and its fractal dimension.
Technical Paper

Characteristics of Intermediate Products Generated During Diesel Combustion by Means of Total Gas Sampling

2004-10-25
2004-01-2923
It is very significant to take the intermediate products in diesel combustion for understanding the generation of exhaust emissions like SOF, dry soot and so on. The products generated in a constant volume combustion chamber were sampled by pricking a sheet of polyester film installed in the chamber to freeze the chemical reaction. The gas was analyzed by a gas chromatography. The fuel used was n-heptane. It is able to explain the generation of exhaust emissions by the experimental results. The other objective is to simulate the intermediate products. It is capable of explaining the relation between the simulated and experimental results.
Technical Paper

Detailed Kinetic Modeling and Laser Diagnostics of Soot Formation Process in Diesel Jet Flame

2004-03-08
2004-01-1398
This work investigates the soot formation process in diesel jet flame using a detailed kinetic soot model implemented into the KIVA-3V multidimensional CFD code and 2D imaging by use of time-resolved laser induced incandescence (LII). The numerical model is based on the KIVA code which is modified to use CHEMKIN as the chemistry solver using Message Passing Interface (MPI). This allows for the chemical reactions to be simulated in parallel on multiple CPUs. The detailed soot model used is based on the method of moments, which begins with fuel pyrolysis, followed by the formation of polycyclic aromatic hydrocarbons, their growth and coagulation into spherical particles, and finally, surface growth and oxidation of the particles. The model can describe the spatial and temporal characteristics of soot formation processes such as soot precursors distributions, nucleation rate and surface reaction rate.
Technical Paper

Effect of ADOIL TAC Additive on Diesel Combustion

1991-11-01
912555
Some papers on the combustion in a diesel engine have been already presented to discuss the effect of the additive called ADOIL TAC. A bottom view DI diesel engine driven at 980rpm with no load was used in the experiment presented here, in order to make clear this effect. JIS second class light diesel fuel oil was injected through a hole nozzle at the normal test run. The additive was intermixed 0.01 vol. % in this fuel oil, in the experiments to compare with the normal combustion. The flame was taken by direct high-speed photography. Profiles of flame temperature and KL were detected on the film by image processing, applying the two-color method. Soot was visualized by high-speed laser shadowgraphy, and the heat release rate was calculated using the cylinder pressure diagram. Discussion on the effect of the additive on the combustion phenomena was made by using all the data.
Technical Paper

Effect of Operational Condition on PM in Exhausted Gas through CI Engine

2007-10-29
2007-01-4077
The particulate matters (PM) containing in the exhaust gas through a CI engine affects strongly the human health. Thus, it is very significant to measure the mechanism of PM itself generation for actualization of a clean CI engine. On the standpoint mentioned above, the authors carried out the experiments of the characteristics of PM generated from a small high speed DI CI engine with a single cylinder. The variables were the equivalence ratio, the injection timing, the EGR rate and the sort of fuel. As a result, the effect of experimental condition on the distribution of PM is clear through experiments.
Technical Paper

Effects of Ambient Temperature and Oxygen Concentration on Soot Behavior in Diesel Flame

2005-09-11
2005-24-007
This paper describes the soot behavior in a diesel flame. The experiments were carried out in a constant volume chamber with quiescent atmosphere. Parameters were the ambient temperature and the oxygen concentration. The integrated image of flame was taken, the natural emission of flame was detected and the KL factor was found by means of classical technique of laser light extinction. The results were discussed by use of the apparent rate of heat release. As a result, the ignition delay and the vortex with large scale generated in a diesel spray affect the soot behavior in a diesel flame.
Technical Paper

Effects of Flame Lift-Off and Flame Temperature on Soot Formation in Oxygenated Fuel Sprays

2003-03-03
2003-01-0073
Considering the bell-shaped temperature dependence of soot particle formation, the control of flame temperature has a possibility to drastically suppress of soot formation. Furthermore, oxygenated fuels are very effective on soot reduction, and the use of these kinds of fuels has a potentiality for smokeless diesel combustion. In this paper, the effects of flame lift-off and flame temperature on soot formation in oxygenated fuel sprays were experimentally investigated using a constant volume combustion vessel which simulated diesel engine conditions. The diffusion flame lift-off length was measured in order to estimate the amount of the oxygen entrained upstream of the flame lift-off length in the fuel jet. This was determined from time-averaged OH chemiluminescence imaging technique. Also, the flame temperature and soot concentration were simultaneously evaluated by means of two-color method.
Technical Paper

Exhaust Emission Through Diesel Combustion of Mixed Fuel Oil Composed of Fuel with High Volatility and that with Low Volatility

2004-06-08
2004-01-1845
The mixed fuel composed of two kinds of fuel oil whose boiling temperature is different each other forms the fine spray with minute droplets when its condition crosses over the two-phase region. It is expected that the fuel with low volatility dominates the ignition delay and that with high volatility does the generation of particulate matter. The experiments were carried out in a rapid compression and expansion machine and in an actual high-speed small sized diesel engine by use of this kind of fuel. The experimental results prove this expectation.
Technical Paper

Fuel Design Concept for Low Emission in Engine Systems

2000-03-06
2000-01-1258
In previous our work, we revealed that the flash boiling process could improve remarkably the spray atomization for the pure substance-single component fuel in relation to the port-injected S.I. engines. Then, we applied this flash boiling spray to the Diesel spray process by the use of the two phase region formed between liquefied CO2 and n-Tridecane as the first step of fuel design concept. And the promoted atomization properties could be obtained in this mixed fuel concept. Further, we could obtain the simultaneous reduction of NO and soot emissions in Diesel engine exhaust due to the spray internal EGR effect and reburning of soot. As the second step, we proposed a novel fuel design concept for low exhaust emission and combustion control, relating to mixed and reformulated fuels with a lower boiling point fuel such as gasoline components or gas fuel and a higher boiling point fuel such as gas oil or heavy oil components to obtain the both advantages of their fuels for combustion.
Technical Paper

Fuel Design Concept for Low Emission in Engine Systems 4th Report: Effect of Spray Characteristics of Mixed Fuel on Exhaust Concentrations in Diesel Engine

2003-03-03
2003-01-1038
In this study, the novel fuel design concept has been proposed in order to realize the low emission and combustion control in engine systems. In this fuel design concept, the mixed fuels with a high volatility fuel (gasoline or gaseous fuel components) and a low volatility fuel (gas oil or fuel oil components) are used in order to improve the spray characteristics by flash boiling. In our previous papers on this study, the fundamental characteristics of spray and its combustion of mixed fuel were reported. In this paper, heat release and exhaust emission (smoke, NOx and THC) characteristics of single cylinder diesel engine operated with the mixed fuels were investigated under each load. The exhaust performance of diesel engine could be improved using mixed fuel, because fuel properties and spray characteristics were controlled by changing mixing fraction of the mixed fuel.
Technical Paper

Genetic Algorithms Optimization of Diesel Engine Emissions and Fuel Efficiency with Air Swirl, EGR,Injection Timing and Multiple Injections

2003-05-19
2003-01-1853
The present study extends the recently developed HIDECS-GA computer code to optimize diesel engine emissions and fuel economy with the existing techniques, such as exhaust gas recirculation (EGR) and multiple injections. A computational model of diesel engines named HIDECS is incorporated with the genetic algorithm (GA) to solve multi-objective optimization problems related to engine design. The phenomenological model, HIDECS code is used for analyzing the emissions and performance of a diesel engine. An extended Genetic Algorithm called the ‘Neighborhood Cultivation Genetic Algorithm’ (NCGA) is used as an optimizer due to its ability to derive the solutions with high accuracy effectively. In this paper, the HIDECS-NCGA methodology is used to optimize engine emissions and economy, simultaneously. The multiple injection patterns are included, along with the start of injection timing, and EGR rate.
Technical Paper

Improvement of Spray and Combustion Process by Applying CO2 Gas Dissolved Fuel

2017-11-05
2017-32-0046
The CO2 gas dissolved fuel for the diesel combustion is effective to reduce the NOx emissions to achieve the internal EGR (Exhaust Gas Recirculation) effect by fuel. This method has supplied EGR gas to the fuel side instead of supply EGR gas to the intake gas side. The fuel has followed specific characteristics for the diesel combustion. When the fuel is injected into the chamber in low pressure, this CO2 gas is separated from the fuel spray. The distribution characteristics of the spray are improved and the improvement of the thermal efficiency by reduction heat loss in the combustion chamber wall, and reduce soot emissions by the lean combustion is expected. Furthermore, this CO2 gas decreases the flame temperature. Further, it is anticipated to reduce NOx emissions by the spray internal EGR effect.
Technical Paper

Large Eddy Simulation of Diesel Spray Combustion with Eddy-Dissipation Model and CIP Method by Use of KIVALES

2007-04-16
2007-01-0247
Three-dimensional large eddy simulation (LES) has been conducted for a diesel spray flame using KIVALES which is LES version of KIVA code. Modified TAB model, velocity interpolation model and rigid sphere model are used to improve the prediction of the fuel-mixture process in the diesel spray. Combustion is simulated using the Eddy-Dissipation model. CIP method was incorporated into the KIVALES in order to suppress the numerical instability on the combustible flow. The formation of soot and NO was simulated using Hiroyasu model and KIVA original model. Three different grid resolutions were used to examine the grid dependency. The result shows that the LES approach with 0.5 mm grid size is able to resolve the instantaneous spray with the intermittency in the spray periphery, the axi-symmetric shape and meandering flow after the end of injection as shown in the experimental results.
Technical Paper

Low Emission Diesel Combustion System by Use of Reformulated Fuel with Liquefied CO2 and n-Tridecane

1999-03-01
1999-01-1136
We propose a new concept on simultaneous reduction of NO and soot emissions in Diesel engine exhaust by use of the diesel fuel oil (n-Tridecane) with liquefied CO2 dissolved. The CO2 dissolved component is expected to undergo flash boiling or gas separation when being injected into the combustion chamber, and improve spray atomization and mixing process both of which are primary factors to govern soot formation. Further, the internal EGR effect caused by CO2 component injected with the fuel is expected for NO formation. In order to assess this concept, spray dynamics measurement was conducted in the constant volume vessel with a variation of ambient pressure and temperature. Further, combustion experiments were carried out by using a rapid compression and expansion machine. Here, characteristics of the evaporative mixed fuel spray were examined by shadowgraph photography.
Technical Paper

Measurement and Modeling on Wall Wetted Fuel Film Profile and Mixture Preparation in Intake Port of SI Engine

1999-03-01
1999-01-0798
In SI engines with port injection system, the injected fuel spray adheres surely on the port wall and the inlet valve, consequently, the spray-wall interaction process leads to the generation of unburned hydrocarbons and uncontrollable mixture formation. This paper deals with the fuel mixture preparation process including basic research on characteristics of the wall-wetted fuel film on a flat wall inside a constant volume vessel. In the experiments, iso-octane mixed with biacetyl as a tracer dopant was injected through a pintle type injector against a flat glass wall under the ambient conditions of atmospheric pressure and room temperature. The thickness of the adhered fuel film on the wall was quantitatively measured by using laser induced fluorescence (LIF) technique, which provides 2-D distribution information with high special resolution as a function of the injection duration, the impingement distance from the injector to the wall, and the impingement angle against the wall.
Technical Paper

Modeling Atomization and Vaporization Processes of Flash-Boiling Spray

2004-03-08
2004-01-0534
Flash-boiling occurs when a fuel is injected to a combustion chamber where the ambient pressure is lower than the saturation pressure of the fuel. It has been known that flashing is a favorable mechanism for atomizing liquid fuels. On the other hand, alternative fuels, such as gaseous fuels and oxygenated fuels, are used to achieve low exhaust emissions in recent years. In general, most of these alternative fuels have high volatility and flash-boiling takes place easily in fuel spray, when they are injected into the combustion chamber of an internal combustion engine under high pressure. In addition, fuel design concept the multicomponent fuel with high and low volatility fuels has been proposed in the previous study in order to control the spray and combustion processes in internal combustion engine. It is found that the multicomponent fuel produce flash-boiling with an increase in the initial fuel temperature.
Journal Article

Modeling of Auto-Ignition and Combustion Processes for Dual-Component Fuel Spray

2011-09-11
2011-24-0001
Auto-ignition and combustion processes of dual-component fuel spray were numerically studied. A source code of SUPERTRAPP (developed by NIST), which is capable of predicting thermodynamic and transportation properties of pure fluids and fluid mixtures containing up to 20 components, was incorporated into KIVA3V to provide physical fuel properties and vapor-liquid equilibrium calculations. Low temperature oxidation reaction, which is of importance in ignition process of hydrocarbon fuels, as well as negative temperature coefficient behavior was taken into account using the multistep kinetics ignition prediction based on Shell model, while a global single-step mechanism was employed to account for high temperature oxidation reaction. Computational results with the present multi-component fuel model were validated by comparing with experimental data of spray combustion obtained in a constant volume vessel.
Technical Paper

Multi-Objective Optimization of Diesel Engine Emissions and Fuel Economy using Genetic Algorithms and Phenomenological Model

2002-10-21
2002-01-2778
In this paper, the simulation of the multi-objective optimization problem of a diesel engine is performed using the phenomenological model of a diesel engine and the genetic algorithm. The target purpose functions are Specific fuel consumption, NOx, and Soot. The design variable is a shape of injection rate. In this research, we emphasize the following three topics by applying the optimization techniques to an emission problem of a diesel engine. Firstly, the multiple injections control the objectives. Secondly, the multi-objective optimization is very useful in an emission problem. Finally, the phenomenological model has a great advantage for optimization. The developed system is illustrated with the simulation examples.
Technical Paper

On-Board Measurement of Engine Performance and Emissions in Diesel Vehicle Operated with Bio-diesel Fuel

2004-03-08
2004-01-0083
This paper describes the results of on-board measurement of engine performance and emissions in diesel vehicle operated with bio-diesel fuels. Here, two waste-cooking oils were investigated. One fuel is a waste-cooking oil methyl esters. This fuel is actually applied to a garbage collection vehicle with DI diesel engine (B100) and the city bus (B20; 80% gas oil is mixed into B100 in volume) as an alternative fuel of gas oil in Kyoto City. Another one is a fuel with ozone treatment by removing impurities from raw waste-cooking oils. Here, in order to improve the fuel properties, kerosene is mixed 70% volume in this fuel. This mixed fuel (i-BDF) is applied into several tracks and buses in Wakayama City. Then, these 3 bio-diesel fuels were applied to the on-board experiments and the results were compared with gas oil operation case.
Technical Paper

Reduction of Heavy Duty Diesel Engine Emission and Fuel Economy with Multi-Objective Genetic Algorithm and Phenomenological Model

2004-03-08
2004-01-0531
In this study, a system to perform a parameter search of heavy-duty diesel engines is proposed. Recently, it has become essential to use design methodologies including computer simulations for diesel engines that have small amounts of NOx and SOOT while maintaining reasonable fuel economy. For this purpose, multi-objective optimization techniques should be used. Multi-objective optimization problems have several types of objectives and they should be minimized or maximized at the same time. There is often a trade-off relationship between objects and derivation of the Pareto optimum solutions that express the relationship between the objects is one of the goals in this case. The proposed system consists of a multi-objective genetic algorithm (MOGA) and phenomenological model. MOGA has strong search capability for Pareto optimum solutions. However, MOGA requires a large number of iterations.
X