Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1D Model for Correcting the Rate of Injection Signal Based on Geometry and Temperature Influence

2017-03-28
2017-01-0819
The fuel consumption and emissions of diesel engines is strongly influenced by the injection rate pattern, which influences the in-cylinder mixing and combustion process. Knowing the exact injection rate is mandatory for an optimal diesel combustion development. The short injection time of no more than some milliseconds prevents a direct flow rate measurement. However, the injection rate is deduced from the pressure change caused by injecting into a fuel reservoir or pipe. In an ideal case, the pressure increase in a fuel pipe correlates with the flow rate. Unfortunately, real measurement devices show measurement inaccuracies and errors, caused by non-ideal geometrical shapes as well as variable fuel temperature and fuel properties along the measurement pipe. To analyze the thermal effect onto the measurement results, an available rate measurement device is extended with a flexible heating system as well as multiple pressure and temperature sensors.
Technical Paper

A Bootstrap Approach to Training DNNs for the Automotive Theater

2017-03-28
2017-01-0099
The proposed technique is a tailored deep neural network (DNN) training approach which uses an iterative process to support the learning of DNNs by targeting their specific misclassification and missed detections. The process begins with a DNN that is trained on freely available annotated image data, which we will refer to as the Base model, where a subset of the categories for the classifier are related to the automotive theater. A small set of video capture files taken from drives with test vehicles are selected, (based on the diversity of scenes, frequency of vehicles, incidental lighting, etc.), and the Base model is used to detect/classify images within the video files. A software application developed specifically for this work then allows for the capture of frames from the video set where the DNN has made misclassifications. The corresponding annotation files for these images are subsequently corrected to eliminate mislabels.
Technical Paper

A CFD Validation Study for Automotive Aerodynamics

2000-03-06
2000-01-0129
A study was conducted using Ford's nine standard CFD calibration models as described in SAE paper 940323. The models are identical from the B-pillar forward but have different back end configurations. These models were created for the purpose of evaluating the effect of back end geometry variations on aerodynamic lift and drag. Detailed experimental data is available for each model in the form of surface pressure data, surface flow visualization, and wake flow field measurements in addition to aerodynamic lift and drag values. This data is extremely useful in analyzing the accuracy of the numerical simulations. The objective of this study was to determine the capability of a digital physics based commercial CFD code, PowerFLOW ® to accurately simulate the physics of the flow field around the car-like benchmark shapes.
Technical Paper

A Case Study in Hardware-In-the-Loop Testing: Development of an ECU for a Hybrid Electric Vehicle

2004-03-08
2004-01-0303
Ford Motor Company has recently implemented a Hardware-In-the-Loop (HIL) testing system for a new, highly complex, hybrid electric vehicle (HEV) Electronic Control Unit (ECU). The implementation of this HIL system has been quick and effective, since it is based on proven Commercial-Off-The-Shelf (COTS) automation tools for real-time that allow for a very flexible and intuitive design process. An overview of the HIL system implementation process and the derived development benefits will be shown in this paper. The initial concept for the use of this HIL system was a complete closed-loop vehicle simulation environment for Vehicle System Controller testing, but the paper will show that this concept has evolved to allow for the use of the HIL system for many facets of the design process.
Technical Paper

A Comparison of Four Methods for Determining the Octane Index and K on a Modern Engine with Upstream, Port or Direct Injection

2017-03-28
2017-01-0666
Combustion in modern spark-ignition (SI) engines is increasingly knock-limited with the wide adoption of downsizing and turbocharging technologies. Fuel autoignition conditions are different in these engines compared to the standard Research Octane Number (RON) and Motor Octane Numbers (MON) tests. The Octane Index, OI = RON - K(RON-MON), has been proposed as a means to characterize the actual fuel anti-knock performance in modern engines. The K-factor, by definition equal to 0 and 1 for the RON and MON tests respectively, is intended to characterize the deviation of modern engine operation from these standard octane tests. Accurate knowledge of K is of central importance to the OI model; however, a single method for determining K has not been well accepted in the literature.
Technical Paper

A Comprehensive Study of Door Slam

2004-03-08
2004-01-0161
As part of an ongoing technical collaboration between Ford and Rouge Steel Company, a comprehensive study of door slam event was undertaken. The experimental phase of the project involved measurements of accelerations at eight locations on the outer panel and strains on six locations of the inner panel. Although slam tests were conducted with window up and window down, results of only one test is presented in this paper. The CAE phase of the project involved the development of suitable “math” model of the door assembly and analysis methodology to capture the dynamics of the event. The predictability of the CAE method is examined through detailed comparison of accelerations and strains. While excellent agreement between CAE and test results of accelerations on the outer panel is obtained, the analysis predicts higher strains on the inner panel than the test. In addition, the tendency of outer panel to elastically buckle is examined.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

A Cost-Effective Offline Routing Optimization Approach to Employee Shuttle Services

2017-03-28
2017-01-0240
Ride Hailing service and Dynamic Shuttle are two key smart mobility practices, which provide on-demand door-to-door ride-sharing service to customers through smart phone apps. On the other hand, some big companies spend millions of dollars annually in third party vendors to offer shuttle services to pick up and drop off employees at fixed locations and provide them daily commutes for employees to and from work. Efficient fixed routing algorithms and analytics are the key ingredients for operating efficiency behind these services. They can significantly reduce operating costs by shortening bus routes and reducing bus numbers, while maintaining the same quality of service. This study developed an off-line optimization routing method for employee shuttle services including regular work shifts and demand based shifts (e.g. overtime shifts) in some regions.
Technical Paper

A Generic Fault Maturing and Clearing Strategy for Continuous On-Board Diagnostic Monitoring

2016-04-05
2016-01-0633
Per California Air Resources Board (CARB) regulations, On-board diagnostic (OBD) of vehicle powertrain systems are required to continuously monitor key powertrain components, such as the circuit discontinuity of actuators, various circuit faults of sensors, and out-of-range faults of sensors. The maturing and clearing of these continuous monitoring faults are critical to simplification of algorithm design, save of engineering cost (i.e., calibration), and reduction of warranty issues. Due to the nature of sensors (to sense different physical quantities) and actuators (to output energy in desired ways), most of OEM and supplies tend to choose different fault maturing and clearing strategy for sensors and actuators with different physics nature, such as timer-based, counter-based, and other physical-quantity-based strategies.
Technical Paper

A Generic Teaching Case Study for Teaching Design for Six Sigma

2006-04-03
2006-01-0501
There are several reasons why it can be daunting to apply Six Sigma to product creation. Foremost among them, the functional performance of new technologies is unknown prior to starting a project. Although, Design For Six Sigma (DFSS) was developed to overcome this difficulty, a lack of applicable in-class case studies makes it challenging to train the product creation community. The current paper describes an in-class project which illustrates how Six Sigma is applied to a simulated product creation environment. A toy construction set (TCS) project is used to instruct students how to meet customer expectations without violating cost, packaging volume and design-complexity constraints.
Technical Paper

A Method of Predicting Brake Specific Fuel Consumption Maps

1999-03-01
1999-01-0556
A method of predicting brake specific fuel consumption characteristics from limited specifications of engine design has been investigated. For spark ignition engines operating on homogeneous mixtures, indicated specific fuel consumption based on gross indicated power is related to compression ratio and spark timing relative to optimum values. The influence of burn rate is approximately accounted for by the differences in spark timings required to correctly phase combustion. Data from engines of contemporary design shows that indicated specific fuel consumption can be defined as a generic function of relative spark timing, mixture air/fuel ratio and exhaust gas recirculation rate. The additional information required to generate brake specific performance maps is cylinder volumetric efficiency, rubbing friction, auxiliary loads, and exhaust back pressure characteristics.
Journal Article

A Model Based Approach for Electric Steering Tuning to Meet Vehicle Steering Performance Targets

2017-03-28
2017-01-1493
Subjective steering feel tuning and objective verification tests are conducted on vehicle prototypes that are a subset of the total number of buildable combinations of body style, drivetrain and tires. Limited development time, high prototype vehicle cost, and hence limited number of available prototypes are factors that affect the ability to tune and verify all the possible configurations. A new model-based process and a toolset have been developed to enhance the existing steering development process such that steering tuning efficiency and performance robustness can be improved. The innovative method utilizes the existing vehicle dynamics simulation and/or physical test data in conjunction with steering system control models, and provides users with simple interfaces which can be used by either CAE or development engineers to perform virtual tuning of the vehicle steering feel to meet performance targets.
Technical Paper

A New Analysis Method for Accurate Accounting of IC Engine Pumping Work and Indicated Work

2004-03-08
2004-01-1262
In order to improve fuel economy, engine manufacturers are investigating various technologies that reduce pumping work in spark ignition engines. Current cylinder pressure analysis methods do not allow valid comparison of pumping work reduction strategies. Existing methods neglect valve timing effects which occur during the expansion and compression strokes, but are actually part of the gas exchange process. These additional pumping work contributions become more significant when evaluating non-standard valve timing concepts. This paper outlines a new analysis method for calculating the pumping work and indicated work of a 4-stroke internal combustion engine. Corrections to PMEP and IMEP are introduced which allow the valid comparison of pumping work and indicated efficiency between engines with different pumping work reduction strategies.
Journal Article

A New Responsive Model for Educational Programs for Industry: The University of Detroit Mercy Advanced Electric Vehicle Graduate Certificate Program

2010-10-19
2010-01-2303
Today's automotive and electronics technologies are evolving so rapidly that educators and industry are both challenged to re-educate the technological workforce in the new area before they are replaced with yet another generation. In early November 2009 Ford's Product Development senior management formally approved a proposal by the University of Detroit Mercy to transform 125 of Ford's “IC Engine Automotive Engineers” into “Advanced Electric Vehicle Automotive Engineers.” Two months later, the first course of the Advanced Electric Vehicle Program began in Dearborn. UDM's response to Ford's needs (and those of other OEM's and suppliers) was not only at the rate of “academic light speed,” but it involved direct collaboration of Ford's electric vehicle leaders and subject matter experts and the UDM AEV Program faculty.
Journal Article

A Novel Technique for Measuring Cycle-Resolved Cold Start Emissions Applied to a Gasoline Turbocharged Direct Injection Engine

2020-04-14
2020-01-0312
There is keen interest in understanding the origins of engine-out unburned hydrocarbons emitted during SI engine cold start. This is especially true for the first few firing cycles, which can contribute disproportionately to the total emissions measured over standard drive cycles such as the US Federal Test Procedure (FTP). This study reports on the development of a novel methodology for capturing and quantifying unburned hydrocarbon emissions (HC), CO, and CO2 on a cycle-by-cycle basis during an engine cold start. The method was demonstrated by applying it to a 4 cylinder 2 liter GTDI (Gasoline Turbocharged Direct Injection) engine for cold start conditions at an ambient temperature of 22°C. For this technique, the entirety of the engine exhaust gas was captured for a predetermined number of firing cycles.
Technical Paper

A Practical Approach to Consider Forming Effects for Full Vehicle Crash Application

2009-04-20
2009-01-0471
The forming effects along with strain rate, actual material properties and weld effects have been found to be very critical for accurate prediction of crash responses especially the prediction of local deformation. As a result, crash safety engineers started to consider these factors in crash models to improve the accuracy of CAE prediction and reduce prototype testing. The techniques needed to incorporate forming simulation results, including thickness change, residual stresses and strains, in crash models have been studied extensively and are well known in automotive CAE community. However, a challenge constantly faced by crash safety engineers is the availability of forming simulation results, which are usually supplied by groups conducting forming simulations. The forming simulation results can be obtained by either using incremental codes with actual stamping processes or one-step codes with final product information as a simplified approach.
Technical Paper

A Segregated Thermal Analysis Method for Liquid-Cooled Traction Batteries

2017-03-28
2017-01-0629
Thermal modeling of liquid-cooled vehicle traction battery assemblies using Computational Fluid Dynamics (CFD) usually involves large models to accurately resolve small cooling channel details, and intensive computation to simulate drive-cycle transient solutions. This paper proposes a segregated method to divide the system into three parts: the cells, the cold plate and the interface between them. Each of the three parts can be separated and thermally characterized and then combined to predict the overall system thermal behavior for both steady-state and transient operating conditions. The method largely simplifies battery thermal analysis to overcome the limitations of using large 3D CFD models especially for pack level dynamic drive cycle simulations.
Technical Paper

A Variable Displacement Supercharger Performance Evaluation

2017-03-28
2017-01-0640
The Variable Displacement Supercharger (VDS) is a twin helical screw style compressor that has a feature to change its displacement and its compression ratio actively during vehicle operation. This device can reduce the parasitic losses associated with supercharging and improve the relative fuel economy of a supercharged engine. Supercharging is a boosting choice with several advantages over turbocharging. There is fast pressure delivery to the engine intake manifold for fast engine torque response providing the fun to drive feel. The performance delivered by a supercharger can enable engine fuel economy actions to include engine downsizing and downspeeding. The cost and difficulty of engineering hot exhaust components is eliminated when using only an air side compressor. Faster catalyst warm up can be achieved when not warming the turbine housing of a turbocharger.
Technical Paper

A Vehicle Model Architecture for Vehicle System Control Design

2003-03-03
2003-01-0092
A robust Vehicle Model Architecture (VMA) has been developed to support model-based Vehicle System Control (VSC) design work and, in general, model-based vehicle system engineering activities. It is based on a logical breakdown of the vehicle into key subsystems with supporting bus infrastructure for distribution of signals between subsystems. Primary physical interfaces between the top level subsystems have been defined. Subsystem models that comply with these interfaces can be easily plugged into the architecture for complete simulation of vehicle systems. The VMA encourages model re-use and sharing between project teams and, furthermore, removes key obstacles to sharing of models with suppliers.
Technical Paper

A semi-analytical approach for vehicle ride simulation

2008-10-07
2008-36-0048
Vehicle dynamics CAE capabilities has increased in the past few years, specially, for handling and steering attributes. However, secondary ride simulations are still highly depended on the tire model. Such tire model must be capable to simulate high order phenomenon such as impact and harshness transmissibility in three directions. In order to gather tire information sufficient to cope with these phenomena, one needs to perform a series of specific tests, and so be able to build the intended tire model. Still, there could be correlation issues. This whole process takes a lot of time and resources. This article presents a semi-analytical approach, using data gathered via wheel force transducers (WFTs) that are typically used for load cascading and durability purposes. The method main advantage is that since it relies on measured data at the wheel center, it is independent of a tire model, and, as such, it demands less time and resources.
X