Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

An Adaptive PID Controller with Neural Network Self-Tuning for Vehicle Lane Keeping System

Vehicle lane keeping system is becoming a new research focus of drive assistant system except adaptive cruise control system. As we all known, vehicle lateral dynamics show strong nonlinear and time-varying with the variety of longitudinal velocity, especially tire’s mechanics characteristic will change from linear characteristic under low speed to strong nonlinear under high speed. For this reason, the traditional PID controller and even self-tuning PID controller, which need to know a precise vehicle lateral dynamics model to adjust the control parameter, are too difficult to get enough accuracy and the ideal control quality. Based on neural network’s ability of self-learning, adaptive and approximate to any nonlinear function, an adaptive PID control algorithm with BP neural network self-tuning online was proposed for vehicle lane keeping.
Technical Paper

Analysis of Illumination Condition Effect on Vehicle Detection in Photo-Realistic Virtual World

Intelligent driving, aimed for collision avoidance and self-navigation, is mainly based on environmental sensing via radar, lidar and/or camera. While each of the sensors has its own unique pros and cons, camera is especially good at object detection, recognition and tracking. However, unpredictable environmental illumination can potentially cause misdetection or false detection. To investigate the influence of illumination conditions on detection algorithms, we reproduced various illumination intensities in a photo-realistic virtual world, which leverages recent progress in computer graphics, and verified vehicle detection effect there. In the virtual world, the environmental illumination is controlled precisely from low to high to simulate different illumination conditions in the driving scenarios (with relative luminous intensity from 0.01 to 400). Sedan cars with different colors are modelled in the virtual world and used for detection task.
Technical Paper

Mode Transition Dynamic Control for Dual-Motor Hybrid Driving System

Coordinated control of mode transition is an important part of the multi-mode hybrid vehicles' control strategy, combined with a vehicle torque distribution strategy to realize an optimal working condition of the power sources, as well as achieve smooth mode switching. This paper builds hybrid electric vehicle driveline dynamics model and depth analyzes drive mode transition process, coordinated control methods were provided to solve three types of mode switching, neural network algorithm was provided to estimate the engine torque. The results show that coordinated control can reduce torque fluctuations and decrease jerk during the transition of different modes to improve the vehicle drivability.
Technical Paper

Multi-Objective Optimization of Interior Noise of an Automotive Body Based on Different Surrogate Models and NSGA-II

This paper studies a multi-objective optimization design of interior noise for an automotive body. An acoustic-structure coupled model with materials and properties was established to predict the interior noise based on a passenger car. Moreover, three kinds of approximation models related damping thickness and the root mean square of the driver’s ear sound pressure level were established through Latin hypercube method and the corresponding experiments. The prediction accuracy was analyzed and compared for the approximate response surface model, Kriging model and Radial Basis Function neural network model. On this basis, multi-objective optimization of the vehicle interior noise was conducted by using NSGA-II. According to the optimization results, the damping composite structure was applied on the car body structure. Then, the comparison of sound pressure level response at driver’s ear location before and after optimization was performed at speed of 60 km/h on a smooth road.
Journal Article

Objective Evaluation of Interior Sound Quality in Passenger Cars Using Artificial Neural Networks

In this research, the interior noise of a passenger car was measured, and the sound quality metrics including sound pressure level, loudness, sharpness, and roughness were calculated. An artificial neural network was designed to successfully apply on automotive interior noise as well as numerous different fields of technology which aim to overcome difficulties of experimentations and save cost, time and workforce. Sound pressure level, loudness, sharpness, and roughness were estimated by using the artificial neural network designed by using the experiment values. The predicted values and experiment results are compared. The comparison results show that the realized artificial intelligence model is an appropriate model to estimate the sound quality of the automotive interior noise. The reliability value is calculated as 0.9995 by using statistical analysis.
Journal Article

Prediction of the Sound Absorption Performance of Polymer Wool by Using Artificial Neural Networks Model

This paper proposes a new method of predicting the sound absorption performance of polymer wool using artificial neural networks (ANN) model. Some important parameters of the proposed model have been adjusted to best fit the non-linear relationship between the input data and output data. What's more, the commonly used multiple non-linear regression model is built to compare with ANN model in this study. Measurements of the sound absorption coefficient of polymer wool based on transfer function method are also performed to determine the sound absorption performance according to GB/T18696. 2-2002 and ISO10534- 2: 1998 (E) standards. It is founded that predictions of the new model are in good agreement with the experiment results.
Technical Paper

Research on Steering Performance of Steer-By- Wire Vehicle

With the popularity of electrification and driver assistance systems on vehicle dynamics and controls, the steering performance of the vehicle put forward higher requirements. Thus, the steer-by-wire technology is becoming particularly important. Through specific control algorithm, the steer-by-wire system electronic control unit can receive signals from other sensors on the vehicle, realize the personalized vehicle dynamics control on the basis of understanding the driver’s intention, and grasp the vehicle movement state. At the same time, to make these driver assistance systems better cooperate with human drivers, reduce system frequent false warning, full consideration of mutual adaptation for the systems and the driver’s characteristics is critical. This paper focuses on the steering performance of steer-by-wire vehicle. Feature parameters are obtained from the virtual turning experiment designed on the driving simulator experimental platform.
Technical Paper

Research on a Neural Network Model Based Automatic Shift Schedule with Dynamic 3-Parameters

To reach the goal of optimal performance match between engine and transmission, the dynamic characteristics of engine should be taken into consideration. In the paper, the dynamic torque and fuel consumption models of engine, described by a multi-layers feed forward neural network, were established. Based on that, the methods used to calculate the optimal dynamic and economical shift schedules with dynamic 3-parameters were put forward. The shift schedule with dynamic 3-parameters based on neural network model is proven to be superior to the shift schedule with only 2-parameters in both dynamic performance and fuel economy by the test.
Technical Paper

Sound Absorption Optimization of Porous Materials Using BP Neural Network and Genetic Algorithm

In recent years, the interior noise of automobile has been becoming a significant problem. In order to reduce the noise, porous materials have been widely applied in automobile manufacturing. In this study, the simulation method and optimal analysis are used to determine the optimum sound absorption of polyurethane foam. The experimental simulation is processed based on the Johnson-Allard model. In the model, the foam adheres to a hard wall. The incident wave is plane wave. The function of the model is to calculate the noise reduction coefficient of polyurethane foam with different thickness, density and porosity. The back propagation neural network coupled with genetic optimization technique is utilized to predict the optimum sound absorption. A developed back propagation neural network model is trained and tested by the simulation data.