Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Design Study to Determine the Impact of Various Parameters on Door Acoustics

2003-05-05
2003-01-1430
Once the design of a door sheetmetal and accessories is confirmed, the acoustics of the door system depends on the sound package assembly. This essentially consists of a watershield which acts as a barrier and a porous material which acts as an absorber. The acoustical performance of the watershield and the reverberant sound build-up in the door cavity control the performance. This paper discusses the findings of a design study that was developed based on design of experiments (DOE) concepts to determine which parameters of the door sound package assembly are important to the door acoustics. The study was based on conducting a minimum number of tests on a five factor - two level design that covered over 16 different design configurations. In addition, other measurements were made that aided in developing a SEA model which is also compared with the findings of the results of the design study.
Technical Paper

A Grammatical Evolution Approach to System Identification of Laser Lap Welding

2006-04-03
2006-01-1614
Laser lap welding quality is a non-linear response based on a host of categorical and numeric material and process variables. This paper describes a Grammatical Evolution approach to the structure identification of the laser lap welding process and compares its performance with linear regression and a neuro-fuzzy inference system.
Technical Paper

A Graphical Representation of Road Profile Characteristics

2004-03-08
2004-01-0769
Load data representing severe customer usage is required during the chassis development process. One area of current research is the use of road profiles for predicting chassis loads. The most direct method of predicting these loads is to run dynamic simulations of the vehicle using numerous road profiles as the excitation. This onerous task may be avoided, and a greatly reduced number of simulations would be required, if roads having similar characteristics can be grouped. Currently, road profiles are characterized by their spectral content. It has been noted by several researches, however, that road profiles are generally nonstationary signals that contain significant transient events and are not well described in the spectral domain. The objective of this work, then, is to develop a method by which the characteristics of the road can be captured by describing these constitutive transient events.
Technical Paper

A New Way of Electrical/Electronic Systems Endurance Testing of Vehicles in a Real World Environment Prior to Production Launch

2001-03-05
2001-01-1101
With the increasing emphasis on Systems Engineering, there is a need to ensure that Electrical/Electronic (E/E) Systems Endurance Testing of vehicles, in a real world environment, prior to Production Launch, is performed in a manner and at a technological level that is commensurate with the high level of electronics and computers in contemporary vehicles. Additionally, validating the design and performance of individual standalone electronic systems and modules “on the bench” does not guarantee that all the permutations and combinations of real-world hardware, software, and driving conditions are taken into account. Traditional Proving Ground (PG) vehicle testing focuses mainly on powertrain durability testing, with only a simple checklist being used by the PG drivers as a reminder to cycle some of the electrical components such as the power window switches, turn signals, etc.
Technical Paper

A Simple Approach to Selecting Automotive Body-in-White Primary-Structural Materials

2002-07-09
2002-01-2050
A simple strategy for building lightweight automobile body-in-whites (BIWs) is developed and discussed herein. Because cost is a critical factor, expensive advanced materials, such as carbon fiber composites and magnesium, must only be used where they will be most effective. Constitutive laws for mass savings under various loading conditions indicate that these materials afford greater opportunity for mass saving when used in bending, buckling or torsion than in tensile, shear or compression. Consequently, it is recommended that these advanced materials be used in BIW components subject to bending and torsion such as rails, sills, “A-B-C” pillars, etc. Furthermore, BIW components primarily subject to tension, compression, or shear, such as floor pans, roofs, shock towers, etc., should be made from lower cost steel. Recommendations for future research that are consistent with this strategy are included.
Video

Advanced Combustion & System Engineering - Affordable Fuel Economy?

2012-05-10
Future fuel economy targets represent a significant challenge to the automotive industry. While a range of technologies are in research and development to address this challenge, they all bring additional cost and complexity to future products. The most cost effective solutions are likely to be combinations of technologies that in isolation might have limited advantages but in a systems approach can offer complementary benefits. This presentation describes work carried out at Ricardo to explore Intelligent Electrification and the use of Stratified Charge Lean Combustion in a spark ignition engine. This includes a next generation Spray Guided Direct Injection SI engine combustion system operating robustly with highly stratified dilute mixtures and capable of close to 40% thermal efficiency with very low engine-out NOx emissions.
Technical Paper

Advancing the State of Strong Hybrid Technology

2006-10-16
2006-21-0058
As the hybrid automotive market becomes quickly saturated with highly competitive products and vehicles, auto manufacturers struggle with business models and the combination of current manufacturing with next generation development. The hybrid development cooperation amongst General Motors, DaimlerChrysler, and BMW offers a new business model that promotes the advancement of the state of strong hybrid technology while maintaining the strong global leadership and competition.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Application of the Modal Compliance Technique to a Vehicle Body in White

2007-05-15
2007-01-2355
This paper describes the application of the modal compliance method to a complex structure such as a vehicle body in white, and the extension of the method from normal modes to the complex modes of a complete vehicle. In addition to the usual bending and torsion calculations, the paper also describes the application of the method to less usual tests such as second torsion, match-boxing and breathing. We also show how the method can be used to investigate the distribution of compliance throughout the structure.
Technical Paper

Attempts for Reduction of Rear Window Buffeting Using CFD

2005-04-11
2005-01-0603
This paper summarizes the major activities of CFD study on rear window buffeting of production vehicles during the past two years at DaimlerChrysler. The focus of the paper is the attempt to find suitable solutions for buffeting suppression using a developed procedure of CFD simulation with commercial software plus FFT acoustic post-processing. The analysis procedure has been validated using three representative production vehicles and good correlation with wind tunnel tests has been attained which has gained the confidence in solving the buffeting problem. Several attempts have been proposed and tried to find solution for buffeting reduction. Some of them are promising, but feasibility and manufacturability still need discussion. In order to find suitable solution for buffeting reduction, more basic research is necessary, more ideas should be collected, and more joint efforts of CFD and testing are imperative.
Technical Paper

Axle Imbalance Measurement and Balancing Strategies

2007-05-15
2007-01-2238
This paper summarizes a study on axle balance measurement and balancing strategies. Seven types of axles were investigated. Test samples were randomly selected from products. Two significant development questions were set out to be answered: 1) What is the minimum rotational speed possible in order to yield measured imbalance readings which correlated to in-vehicle imbalance-related vibration. What is the relationship between the measured imbalance and rotational speed. To this end, the imbalance level of each axle was measured using a test rig with different speeds from 800 to 4000 rpm with 200 rpm increments. 2) Is it feasible to balance axle sub-assemblies only and still result in a full-assembly that satisfies the assembled axle specification? To this end, the sub-assemblies were balanced on a balance machine to a specified level. Then with these balanced sub-assemblies, the full assemblies were completed and audited on the same balance test rig in the same way.
Technical Paper

Beam Element Leaf Spring Suspension Model Development and Assessment Using Road Load Data

2006-04-03
2006-01-0994
Knowledge of the loads experienced by a leaf spring suspension is required for the optimal design of the suspension components and frame. The most common method of representing leaf springs is the SAE 3 link model, which does not give good results in the lateral direction. In this paper, a beam element leaf spring model is developed. This model is validated using data obtained from laboratory tests done on leaf spring assemblies. The model is then subjected to actual road load data measured on the Proving Ground. Lastly, results from the beam element model are presented and compared with results obtained from proving ground tests. Overall, the beam element model gives good results in all directions except in situations where it is subjected to high fore/aft acceleration and high reverse braking events.
Technical Paper

Body/Chassis Dynamic Response Under Experimental Modal Test

2005-05-16
2005-01-2463
Mode management is an essential part of the design process for NVH performance. System resonances must be sufficiently separated to minimize interaction from source inputs and each other [1]. Such resonances are typically determined through experimental modal testing conducted in a lab environment under controlled and repeatable conditions. Global vehicle and suspension system response demonstrate soft nonlinear behavior, however. Their resonant frequencies may thus decrease under on-road input not reproducible in a lab environment. Subsequently, mode management charts derived from lab testing may not be representative of the vehicle's on-road dynamic response. This paper presents modal model determination methodologies, and examines suspension system and vehicle global dynamic response under lab modal test and operating conditions. Vehicle suspension modes measured under static and dynamic (rolling) conditions will be compared.
Technical Paper

CAE Fatigue Prediction of Fuel Tank Straps using Proving Ground Loads

2005-04-11
2005-01-1405
The durability of fuel tank straps is essential for vehicle safety. Extensive physical tests are conducted to verify designs for durability. Due to the complexity of the loads and the fuel-to-tank interaction, computer-aided-engineering (CAE) simulation has had limited application in this area. This paper presents a CAE method for fuel tank strap durability prediction. It discusses the analytical loads, modeling of fuel-to-tank interaction, dynamic analysis methods, and fatigue analysis methods. Analysis results are compared to physical test results. This method can be used in either a fuel-tank-system model or a full vehicle model. It can give directional design guidance for fuel tank strap durability in the early stages of product development to reduce vehicle development costs.
Technical Paper

Chassis Dynamometer Simulation of Tire Impact Response

2001-04-30
2001-01-1481
One of the major NVH concerns for automobile manufacturers is the response of a vehicle to the impact of the tire as it encounters a road discontinuity or bump. This paper describes methods for analyzing the impact response of a vehicle to such events. The test vehicle is driven on a dynamometer, on which a bump simulating cleat is mounted. The time histories of the cleat impact response of the vehicle can be classified as a transient and a repeated signal, which should be processed in a special way. This paper describes the related signal processing issues, which include converting the time data into a continous spectrum, determination of the correct scaling factor for the analyzed spectrum, and smoothing out harmonics and fluctuations in the signal. This procedure yields a smooth frequency spectrum with a correctly scaled amplitude, in which the frequency contents can be easily identified.
Technical Paper

Clamp Load Consideration in Fatigue Life Prediction of a Cast Aluminum Wheel Using Finite Element Analysis

2004-03-08
2004-01-1581
Loads generated during assembly may cause significant stress levels in components. Under test conditions, these stresses alter the mean stress which in turn, alters the fatigue life and critical stress area of the components as well. This paper describes the Finite Element Analysis (FEA) procedure to evaluate behavior of a cast aluminum wheel subjected to the rotary fatigue test condition as specified in the SAE test procedure (SAE J328 JUN94). Fatigue life of the wheel is determined using the S-N approach for a constant reversed loading condition. In addition, fatigue life predictions with and without clamp loads are compared. It is concluded that the inclusion of clamp load is necessary for better prediction of the critical stress areas and fatigue life of the wheel.
Technical Paper

Comparison of Parametric and Non-Parametric Methods for Determining Injury Risk

2003-03-03
2003-01-1362
This paper contains a review of methods for deriving risk curves from biomechanical data obtained from impact experiments on human surrogates. It covers many of the problems and pitfalls of obtaining realistic human risk curves from impact experiments. The strength and weakness of both parametric and non-parametric methods are evaluated. The limitations of standard analysis of censored impact test data are presented. Methods are given for determining risk curves from both doubly censored data and data obtained from impacts to body regions in which there are more than one mechanism of injury. A detailed set of examples is presented in which different experimental data are analyzed using the Consistent Threshold method and the logistic approach. Finally risk curves for published data are presented for the femur, head, thorax, and neck.
Technical Paper

Complex Systems Method Applied to Identify Carbon Dioxide Emission Reductions for Light-Duty Vehicles for the 2020-2025 Timeframe

2012-04-16
2012-01-0360
The U.S. Environmental Protection Agency, U.S. Department of Transportation's National Highway and Traffic Safety Administration, and the California Air Resources Board have recently released proposed new regulations for greenhouse gas emissions and fuel economy for light-duty vehicles and trucks in model years 2017-2025. These proposed regulations intend to significantly reduce greenhouse gas emissions and increase fleet fuel economy from current levels. At the fleet level, these rules the proposed regulations represent a 50% reduction in greenhouse gas emissions by new vehicles in 2025 compared to current fleet levels. At the same time, global growth, especially in developing economies, should continue to drive demand for crude oil and may lead to further fuel price increases. Both of these trends will therefore require light duty vehicles (LDV) to significantly improve their greenhouse gas emissions over the next 5-15 years to meet regulatory requirements and customer demand.
Technical Paper

Computer Aided Simulations in Machining Applications

2005-04-11
2005-01-0518
Computer applications have been widely used to assist product design. The successes and sophistication of computer aided engineering (CAE) techniques are respectfully recognized in this field. CAE applications in the manufacturing area however are still developing, although the manufacturing community is increasingly starting to pay attentions to computer simulations in its daily workings. This paper will briefly introduce some of these applications and promote awareness of computer simulations in manufacturing area. It contains four main sections: finite element analysis (FEA) in machining fixture design, FEA applications in component assembly, machining process simulations and machining vibrations in the milling operation. Each section comes with a practical case study, potential benefits are identified and conclusions are presented by using an integrated design and analysis approach.
Technical Paper

Computer-Aided Vehicle Design and Packaging Using Standard Naming Design Methodology

2003-03-03
2003-01-1302
Vehicle design and packaging is a repetitive and tedious process that involves frequent engineering and design changes. To improve design efficiency, a standard naming vehicle design methodology is proposed in this paper. For the geometric or the functional object used in the vehicle context, a standard name is assigned and also used as a unique object feature through its life cycle. With the proposed standard naming design methodology, the engineering knowledge can be efficiently embedded into the CAD design, and hence, vehicle design can be executed in a more automated fashion. Work case of the standard naming design methodology is illustrated by a vehicle design and packaging application using CATIA V5.
X