Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

3D Coverage Control and Target Orientation Alignment Using Unmanned Ground Vehicle with Onboard Camera Sensor

2023-04-11
2023-01-0693
This paper addresses a three dimensional (3D) mission domain coverage control problem combined with camera pose control to align towards specific objects of interest. We consider an unmanned ground vehicle (UGV) based on a unicycle kinematics model with an onboard camera sensor based on a visual perspective sensor model. The coverage control problem has been researched in large part for planar domains, which is however not sufficient for real world applications for UGV navigation. Furthermore, in contrast to coverage control of points in the environment, when dealing with objects of interest, it is more amicable to consider that there exist certain orientations to which the camera must align itself to properly cover the object and make ‘sense’ of it. Hence, we seek to derive both UGV coverage control law for 3D mission domains and onboard camera pose control considering target orientation.
Technical Paper

A Control Algorithm for Low Pressure - EGR Systems Using a Smith Predictor with Intake Oxygen Sensor Feedback

2016-04-05
2016-01-0612
Low-pressure cooled EGR (LP-cEGR) systems can provide significant improvements in spark-ignition engine efficiency and knock resistance. However, open-loop control of these systems is challenging due to low pressure differentials and the presence of pulsating flow at the EGR valve. This research describes a control structure for Low-pressure cooled EGR systems using closed loop feedback control along with internal model control. A Smith Predictor based PID controller is utilized in combination with an intake oxygen sensor for feedback control of EGR fraction. Gas transport delays are considered as dead-time delays and a Smith Predictor is one of the conventional methods to address stability concerns of such systems. However, this approach requires a plant model of the air-path from the EGR valve to the sensor.
Technical Paper

A Diesel Engine Emission System Based on Brownian Diffusion a Separation

2021-04-06
2021-01-0583
Diesel engine exhaust poses an ongoing threat to human health as well as to the environment. Automotive exhaust treatment systems have been developed over the years to reduce the large amount of diesel particulate matter (DPM) released to the atmosphere. Current systems can be categorized as selective catalytic reduction, catalytic converters, and diesel particulate filters. This study presents an emission system that focuses on the removal of exhaust particles using Brownian diffusion of DPM toward fog drops followed by cyclonic separation of DPM rich fog drops. The experimental system consisted of a 13.2 kW diesel engine, heat exchanger to cool the exhaust to saturation temperature, ultrasonic fogger, cyclone separator, and recovery of waste particulate. Representative emission tests have been performed at five different diesel engine speeds and corresponding crankshaft loads.
Technical Paper

A Digital Design Agent for Ground Vehicles

2024-04-09
2024-01-2004
The design of transportation vehicles, whether passenger or commercial, typically involves a lengthy process from concept to prototype and eventual manufacture. To improve competitiveness, original equipment manufacturers are continually exploring ways to shorten the design process. The application of digital tools such as computer-aided-design and computer-aided-engineering, as well as model-based computer simulation enable team members to virtually design and evaluate ideas within realistic operating environments. Recent advances in machine learning (ML)/artificial intelligence (AI) can be integrated into this paradigm to shorten the initial design sequence through the creation of digital agents. A digital agent can intelligently explore the design space to identify promising component features which can be collectively assessed within a virtual vehicle simulation.
Technical Paper

A Finite Element Design Study and Performance Evaluation of an Ultra-Lightweight Carbon Fiber Reinforced Thermoplastic Composites Vehicle Door Assembly

2020-04-14
2020-01-0203
The ever-growing concern to reduce the impact of transportation systems on environment has pushed automotive industry towards fuel-efficient and sustainable solutions. While several approaches have been used to improve fuel efficiency, the light-weighting of automobile components has proven broadly effective. A substantial effort is devoted to lightweighting body-in-white which contributes ~35% of total weight of vehicle. Closure systems, however, have been often overlooked. Closure systems are extremely important as they account for ~ 50% of structural mass and have a very diverse range of requirements, including crash safety, durability, strength, fit, finish, NVH, and weather sealing. To this end, a carbon fiber-reinforced thermoplastic composite door is being designed for an OEM’s mid-size SUV, that enables 42.5% weight reduction. In this work, several novel composite door assembly designs were developed by using an integrated design, analysis and optimization approach.
Technical Paper

A First Look at Android Automotive Privacy

2023-04-11
2023-01-0037
Android Automotive OS (AAOS) has been gaining popularity in recent years, with several OEMs across the world already deploying it or planning to in the near future. Besides the benefit of a well-known, customizable and secure operating system for OEMs, AAOS allows third-party app developers to offer their apps on vehicles of several manufacturers at the same time. Currently, there are 55 apps for AAOS that can be categorized as media, navigation or point-of-interest apps. Specifically the latter two categories allow the third-parties to collect certain sensor data directly from the vehicle. Furthermore, the latest version of AAOS also allows the OEM to configure and collect In-Vehicle Infotainment (IVI) and vehicle data (called OEM telemetry). However, increasing connectivity and integration with the in-vehicle network comes at the expense of user privacy. Previous works have shown that vehicular sensor data often contains personally identifiable information (PII).
Technical Paper

A Functional Decomposition Approach for Feature-Based Reference Architecture Modeling

2021-04-06
2021-01-0259
Variant modeling techniques have been developed to allow systems engineers to model multiple similar variants in a product line as a single variant model. In this paper, we expand on this past work to explore the extent to which variant modeling in SysML can be applied to a broad range of dissimilar systems, covering the entire domain of ground vehicles, in single reference architecture model. Traditionally, a system’s structure is decomposed into subsystems and components. However, this method is found to be ineffective when modeling variants that are functionally similar but structurally different. We propose to address this challenge by first decomposing the system not only by subsystem but also by high-level function. This pattern is particularly useful for situations where two variants perform the same function, but one variant performs the function using one subsystem, whereas the other variant performs the same function using one or more different subsystems.
Technical Paper

A Heuristic Supervisory Controller for a 48V Hybrid Electric Vehicle Considering Fuel Economy and Battery Aging

2019-01-15
2019-01-0079
Most studies on supervisory controllers of hybrid electric vehicles consider only fuel economy in the objective function. Taking into consideration the importance of the energy storage system health and its impact on the vehicle’s functionality, cost, and warranty, recent studies have included battery degradation as the second objective function by proposing different energy management strategies and battery life estimation methods. In this paper, a rule-based supervisory controller is proposed that splits the torque demand based not only on fuel consumption, but also on the battery capacity fade using the concept of severity factor. For this aim, the severity factor is calculated at each time step of a driving cycle using a look-up table with three different inputs including c-rate, working temperature, and state of charge of the battery. The capacity loss of the battery is then calculated using a semi-empirical capacity fade model.
Technical Paper

A Modified Monte-Carlo Approach to Simulation-Based Vehicle Parameter Design with Multiple Performance Objectives and Multiple Scenarios

2002-03-04
2002-01-1186
Shorter development times in the automotive industry are leading to the increased use of computer simulation in the vehicle design cycle to pre-optimize vehicle concepts. The focus of the work presented in this study is vehicle dynamic performance in different driving maneuvers. More specifically this paper presents a methodology for simulation-based parameter design of vehicles for excellent performance in multiple maneuvers. The model used in the study consists of eight degrees-of-freedom and has been validated previously. The vehicle data used is for a commercially available vehicle. A number of different driving scenarios (maneuvers) based on ISO standards for transient dynamic behavior are implemented and performance indices are calculated for each individual maneuver considered. Vehicle performance is assessed based on the performance indices.
Technical Paper

A Morphological, Combinatory Tool for Design of Low-Gap Automotive Body Panels

2009-04-20
2009-01-0342
This paper proposes a conceptual design tool that could direct designers towards concepts that lead to reduced gaps on the exterior of an automobile. Apart from the manufacturing and assembly tolerance stack up, the design and integration method of the body panels in an automobile contribute to the gap. . A benchmark study suggested cursory concepts to avoid or minimize the gaps. The proposed design tool uses a modified morphological chart approach to populate a table with concepts obtained from the benchmark study and by other means. The design tool also incorporates decision alternatives and hence is different from a morphological chart. The design tool can be used to highlight the occurrence of a high level tolerance stack up chain on the structural/mounting members. Conceptual component architectures are arranged in such a fashion to facilitate combinations through visual means.
Technical Paper

A Multi-Objective Power Component Optimal Sizing Model for Battery Electric Vehicles

2021-04-06
2021-01-0724
With recent advances in electric vehicles, there is a plethora of powertrain topologies and components available in the market. Thus, the performance of electric vehicles is highly sensitive to the choice of various powertrain components. This paper presents a multi-objective optimization model that can optimally select component sizes for batteries, supercapacitors, and motors in regular passenger battery-electric vehicles (BEVs). The BEV topology presented here is a hybrid BEV which consists of both a battery pack and a supercapacitor bank. Focus is placed on optimal selection of the battery pack, motor, and supercapacitor combination, from a set of commercially available options, that minimizes the capital cost of the selected power components, the fuel cost over the vehicle lifespan, and the 0-60 mph acceleration time. Available batteries, supercapacitors, and motors are from a market survey.
Journal Article

A Nonlinear Model Predictive Control Strategy with a Disturbance Observer for Spark Ignition Engines with External EGR

2017-03-28
2017-01-0608
This research proposes a control system for Spark Ignition (SI) engines with external Exhaust Gas Recirculation (EGR) based on model predictive control and a disturbance observer. The proposed Economic Nonlinear Model Predictive Controller (E-NMPC) tries to minimize fuel consumption for a number of engine cycles into the future given an Indicated Mean Effective Pressure (IMEP) tracking reference and abnormal combustion constraints like knock and combustion variability. A nonlinear optimization problem is formulated and solved in real time using Sequential Quadratic Programming (SQP) to obtain the desired control actuator set-points. An Extended Kalman Filter (EKF) based observer is applied to estimate engine states, combining both air path and cylinder dynamics. The EKF engine state(s) observer is augmented with disturbance estimation to account for modeling errors and/or sensor/actuator offset.
Technical Paper

A Novel 1-ϕ Cuk Based On-Board EV Charger with Minimal Power Components

2023-10-31
2023-01-1686
This paper proposes a novel 1-ϕ, Cuk based on-board electric vehicle (EV) charger with least power components. The proposed EV charger has a special feature to achieve power factor correction (PFC) at AC grid without requirement of the grid voltage and current sensors which cuts the cost and increases the power density of the EV charger along with robustness to noise. The automatic PFC at AC grid is accomplished by operating the output DC inductor in discontinuous conduction mode (DCM). The proposed EV charger necessitates a minimal number of power components for positive and negative half cycles of AC grid which improves the overall efficiency of the system. This is possible due to the combination of inverting and non-inverting Cuk converters are used for each half cycle of the AC grid. Further, the presence of output inductor in the EV charger reduces the ripples in the output current which is not common with all the existing chargers in the literature.
Technical Paper

A Numerical Simulation for the Hybrid Single Shot (HSS) Process Used to Manufacture Thermoset-Thermoplastic Components

2021-04-06
2021-01-0350
Multi-material design is one of the trending methods for automakers to achieve lightweighting cost-efficiently and meet stringent regulations and fuel efficiency concerns. Motivated by this trend, the hybrid single-shot (HSS) process has been recently introduced to manufacture thermoset-thermoplastic composites in one single integrated operation. Although this integration is beneficial in terms of reducing the cycle time, production cost, and manufacturing limitations associated with such hybrid structures, it increases the process complexity due to the simultaneous filling, forming, curing, and bonding actions occurring during the process. To overcome this complexity and have a better understanding on the interaction of these physical events, a quick yet accurate simulation of the HSS process based on an experimentally calibrated numerical approach is presented here to elucidate the effect of different process settings on the final geometry of the hybrid part.
Technical Paper

A Preliminary Method of Delivering Engineering Design Heuristics

2020-04-14
2020-01-0741
This paper argues the importance of engineering heuristics and introduces an educational data-driven tool to help novice engineers develop their engineering heuristics more effectively. The main objective in engineering practice is to identify opportunities for improvement and apply methods to effect change. Engineers do so by applying ‘how to’ knowledge to make decisions and take actions. This ‘how to’ knowledge is encoded in engineering heuristics. In this paper, we describe a tool that aims to provide heuristic knowledge to users by giving them insight into heuristics applied by experts in similar situations. A repository of automotive data is transformed into a tool with powerful search and data visualization functionalities. The tool can be used to educate novice automotive engineers alongside the current resource intensive practices of teaching engineering heuristics through social methods such as an apprenticeship.
Technical Paper

A Prognostic Based Control Framework for Hybrid Electric Vehicles

2022-03-29
2022-01-0352
Electrified transportation has received significant interest recently because of sustainable and clean energy goals. However, the degradation of electrical components such as energy storage systems raises system reliability and economic concerns. In this paper, a prognostic-based control strategy is proposed for hybrid electric vehicles (HEVs) to abate the degradation of energy systems. Degradation forecasting models of electrical components are developed to predict their degradation paths. The predicted results are then used to control HEVs in order to reduce the degradation of components.
Journal Article

A Real-Time Model for Spark Ignition Engine Combustion Phasing Prediction

2016-04-05
2016-01-0819
As engines are equipped with an increased number of control actuators to meet fuel economy targets they become more difficult to control and calibrate. The large number of control actuators encourages the investigation of physics-based control strategies to reduce calibration time and complexity. Of particular interest is spark timing control and calibration since it has a significant influence on engine efficiency, emissions, vibration and durability. Spark timing determination to achieve a desired combustion phasing is currently an empirical process that occurs during the calibration phase of engine development. This process utilizes a large number of stored surfaces and corrections to account for the wide range of operating environments and conditions that a given engine will experience. An obstacle to realizing feedforward physics-based combustion phasing control is the requirement for an accurate and fast combustion model.
Technical Paper

A Reconfigurable Battery Topology for Cell Balancing

2023-10-31
2023-01-1683
This paper proposes a novel reconfigurable battery balancing topology and reinforcement learning-based intelligent balancing management system. The different degradations cause a significant loss of battery pack available capacity, as the pack power output relies on the weakest cell due to the relevant physical requirements. To handle this capacity drop issue, a reconfigurable battery topology is adopted to improve the usability of the heterogeneous battery. There are some existing battery reconfigurable topologies in the literature. However, these studies rely on the limited options of topology designs, and there is a lack of study on the reconfigurability of these designs and other possible new designs. Also, it is rare to find an optimal management system for the reconfigurable battery topology. To fill these research gaps, this paper explores existing battery reconfigurable topology designs and proposes a new reconfigurable topology for battery balancing.
Technical Paper

A Review of Spark-Assisted Compression Ignition (SACI) Research in the Context of Realizing Production Control Strategies

2019-09-09
2019-24-0027
This paper seeks to identify key input parameters needed to achieve a production-viable control strategy for spark-assisted compression ignition (SACI) engines. SACI is a combustion strategy that uses a spark plug to initiate a deflagration flame that generates sufficient ignition energy to trigger autoignition in the remaining charge. The flame propagation phase limits the rate of cylinder pressure rise, while autoignition rapidly completes combustion. High dilution within the autoignited charge is generally required to maintain reaction rates feasible for production. However, this high dilution may not be reliably ignited by the spark plug. These competing constraints demand novel mixture preparation strategies for SACI to be feasible in production. SACI with charge stratification has demonstrated sufficiently stable flame propagation to reliably trigger autoignition across much of the engine operating map.
Technical Paper

A Review of Spark-Ignition Engine Air Charge Estimation Methods

2016-04-05
2016-01-0620
Accurate in-cylinder air charge estimation is important for engine torque determination, controlling air-to-fuel ratio, and ensuring high after-treatment efficiency. Spark ignition (SI) engine technologies like variable valve timing (VVT) and exhaust gas recirculation (EGR) are applied to improve fuel economy and reduce pollutant emissions, but they increase the complexity of air charge estimation. Increased air-path complexity drives the need for cost effective solutions that produce high air mass prediction accuracy while minimizing sensor cost, computational effort, and calibration time. A large number of air charge estimation techniques have been developed using a range of sensors sets combined with empirical and/or physics-based models. This paper provides a technical review of research in this area, focused on SI engines.
X