Refine Your Search

Topic

Search Results

Technical Paper

A Cost-Effective Approach to Attain Near-Vehicle Conditions in Coolant Circuit of Engine Test Bench

2022-10-05
2022-28-0084
With advancement of technologies, upgradation of validation procedures and equipment on engine dynamometer test bed is required to simulate environment similar to vehicle and achieve accurate test results. A coolant conditioning system helps in achieving desired temperatures of coolant in the circuit during engine validation. However, unlike radiator type cooling systems of vehicles, conventional coolant conditioning systems on engine test beds generate negative pressure in circuit which poses a risk of coolant boiling, loss of intended heat transfer and hence higher temperature in cylinder head which can be detrimental for durability of critical components like valves, valve seats etc. This paper encompasses a stepwise approach followed to attain near-vehicle coolant pressure conditions for a naturally aspirated engine. Coolant used for this experiment was 50:50 (by volume) ethylene glycol and water mixture.
Technical Paper

A Methodology to Enhance the Directional Load Bearing Performance of Cowl Cover and Its Effect on Pedestrian Head Impact

2020-04-14
2020-01-0911
In the modern automobile scenario in developing countries, customers are getting more meticulous and market more competitive. Now even the budget vehicle customer expects desirable vehicle performance in specific use cases of the vehicle that were previously not focused by designers. Hence, the focus on perceived quality challenges automobile engineers to go the extra mile when it comes to the cost-effective design of parts that are tangible to the customer. A vehicle's cowl cover is one such exterior component. The primary functions of this part are to provide air intake opening for the HVAC system and cover the components like wiper motor. The aesthetic function is to cover the gaps between windshield, hood, and fender as seamlessly as possible. A specific role of cowl cover, which calls for a designer's attention, is its load-bearing capability.
Technical Paper

A Study of Engine Mount Optimisation of Three-Cylinder Engine through Multi-Body Dynamic Simulation and Its Verification by Vehicle Measurement

2015-01-14
2015-26-0126
Three-cylinder Engine without balancer shaft is a recent trend towards development of lightweight and fuel-efficient powertrain for passenger car. In addition, customer's expectation of superior NVH inside vehicle cabin is increasing day by day. Engine mounts address majority of the NVH issues related to transfer of vibration from engine to passenger cabin. Idle vibration isolation for a three-cylinder engine is a challenging task due to possibility of overlapping of Powertrain's rigid body modes with engine's firing frequency. This Overlapping of rigid body can be avoided either by modifying mount characteristic or by changing the position of mounts based on multi-body-dynamics (MBD) simulation. This paper explains about two types of engine mounting system for a front-wheel drive transversely mounted three-cylinder engine. The base vehicle was having three-point mounting system i.e. all three engine mounts were pre-loaded.
Technical Paper

An Experimental Approach to Investigate the FEAD Cover Failure & Its Design Optimization

2024-01-16
2024-26-0371
In automotive Front End Accessory Drives (FEAD), the crankshaft supplies power to accessories like alternators, pumps, etc. FEAD undergoes forced vibration due to crankshaft excitation, dynamic tension fluctuations can cause the belt to slip on the accessory pulleys. By considering the criticality of the system, when engine mounting is longitudinally to the vehicle which makes it directly exposed to the air flow containing foreign particles which may cause the damage to the FEAD system and deteriorate the intended functionality. FEAD cover is introduced in the system to enhance belt-pully system functionality by restricting the entry of foreign particles during engine operation. This paper contains a study of FEAD cover failure and provides the stepwise approach to capture such issue during novel model development for 4 cylinder naturally aspirated engine during engine bench testing.
Technical Paper

Analysis of Thermal Coating on Engine Performance Parameters & Fuel Economy of a Small Size NA Spark Ignition Engine

2021-09-15
2021-28-0134
With strict upcoming regulation norms, it becomes a challenging task for automotive industry to develop highly efficient engine that meets all the regulation requirements. The focus of automakers is to utilize fuel energy in most efficient way and to reduce the energy loss from the engine to improve thermal efficiency. Heat loss to the cooling medium is one of the prime losses inside the combustion chamber. Thermal barrier coating is used to reduce heat losses across combustion chamber surfaces (Piston, head, valves and cylinder liner) as it provides good insulation because of the prominent properties of coating materials like low thermal conductivity, low heat capacity, high melting point etc. This paper presents application and impact of thermal swing coating on thermal efficiency. Thermal swing coating material follows gas temperature quickly throughout the cycle which reduces the temperature difference between gas and coating surface and thus reduces the heat loss.
Technical Paper

CAE Approach for Radiator Bush Dynamic Simulation

2022-10-05
2022-28-0094
Radiators are one of the major components in the automotive engine cooling system. The road excitations from the frame to the radiator are dampened using rubber bushes. In this work, we analyzed a radiator sub-assembly with bushes by applying acceleration which are recorded at the center of gravity of the radiator. The radiator is considered as the concentrated mass which is attached to the upper and the lower radiator tank which is further connected to the frame through the bushings. An implicit transient dynamic analysis is set up. The hyper elastic coefficients for EPDM rubber are determined using the experimental data fit and structural damping coefficients are applied. When excited by the acceleration applied at center of the radiator component, the rubber bushes are deformed severely. Moreover, the analysis shows high strains in certain location on the upper bush where the part showed actual failure in the testing.
Technical Paper

CFD Simulation of Transmission for Lubrication Oil Flow Validation and Churning Loss Reduction

2020-04-14
2020-01-1089
Rapidly changing emission and fuel efficiency regulations are pushing the design optimization boundaries further in the Indian car market which is already a very cost conscious. Fuel economy can be improved by reducing moving parts friction and weight optimization. Driveline or Transmission power losses are major factor in overall efficiency of rotating parts in a vehicle. Transmission efficiency can be improved by using low viscosity oil, reducing oil quantity and reducing churning losses in car transmission. Changes like low viscosity and reduced oil volume give rise to challenges like compromised lubrication and durability of rotating parts. This further leads to extended design cycles for launching new cars with better transmission efficiency and fuel economy into the market. Design cycle time can be reduced by using CFD simulation for oil flow validation in the early design stage.
Technical Paper

Challenges of Hydraulic Engine Mount Development for NVH Refinement

2018-04-03
2018-01-0681
NVH refinement of passenger vehicle is essential to customer acceptance for premium or even mid-size segment passenger cars. Hydraulic engine mount is becoming common for these segments to reduce engine bounce, idle shake and noise transfer to passenger cabin. Modern layout of hydraulic mount with integrated engine-bracket and smaller size insulator has made it cost-effective to use due to reduction of cost gap from conventional elastomeric mounts. However the downsizing and complex internal structure may create some new types of noises in passenger cabin which are very difficult to identify in initial development stage. Main purpose of hydraulic mount is to provide high damping at low-frequency range (6~15 Hz) and to isolate noise transfer from combustion engine to passenger cabin within wide frequency range (15~600 Hz).This paper emphasizes on challenges and problems related to hydraulic mount development.
Technical Paper

Design Optimization of Engine Mount De-Coupler for Cabin Noise Refinement in Passenger Vehicle

2019-01-09
2019-26-0199
Quieter cabins are indispensable in today’s evolving automobile industry. The effective isolation of vehicle noise and vibrations are essential to achieve the above. Since, low frequency powertrain induced NVH has been one of the major contributors affecting noise and vibration levels inside the passenger cabin. Thus, use of hydraulic mounts is a natural choice for all major OEMs. The objective of this study is to optimize the design of the hydraulic mount de-coupler unit, to reduce the abnormal noise felt inside the cabin. This condition was observed when the vehicle was driven at 20~30 km/h over undulated road surface, found very often in Indian drive conditions. Due to lack of accuracy and repeatability errors during NVH data acquisition in actual driving condition, the above road profile was captured and subsequently simulated in an acoustically treated BSR (Buzz, Squeak and Rattle) four poster simulator.
Technical Paper

Dynamic Strength Co-Simulation for Valve Train Mechanism Design Virtual Validation

2020-04-14
2020-01-0949
As the automotive market is very dynamic and vehicle manufactures try to reduce the vehicle development cycle time, more focus is being given to CAE simulation technologies to reduce the design cycle time and number of physical tests. CAE engineers are continuously working on improving the accuracy of CAE simulation, such as using flexible body dynamic simulation in place of linear static analysis. Strength calculation under dynamic condition is more accurate as compared to static condition as it gives more clear understanding of stress variation with motion, contacts and mass inertia. Failure has been observed in new development of valve train pivot screw under test conditions. As per linear static analysis, design was judged OK. Normal linear static analysis is a two stage process. In first stage loads are calculated by hand or peak loads are taken from multibody dynamics (MBD) rigid body analysis.
Technical Paper

Experimental Approach for the Knocking Noise Source Identification & Its Suppression through Lubrication Regime Optimization in Crank-Train of an IC Engine

2022-10-05
2022-28-0067
Over the years, Fuel efficiency and cabin comfort of vehicle has become increasingly important in buying decision and can significantly give competitive edge to the vehicle in marketplace. Weight and friction reduction of rotating and reciprocating components in engines is one of the proven approaches to improve the efficiency of internal combustion engine. To reduce the friction, the general approach is to use low viscosity engine oils, improve the surface finish and reduce the contact area of sliding elements, switch over from sliding contact to rolling contact etc. However sometimes this approach has adverse impact on engine NVH characteristics due to occurrence of abnormal transient noise due to mechanical knocking of the components in specific operating conditions.
Technical Paper

Fuel Efficient Algorithm for Climate Control in Next Generation Vehicles

2017-01-10
2017-26-0370
Automobile industry is shifting its focus from conventional fuel vehicles to NexGen vehicles. The NexGen vehicles have electrical components to propel the vehicle apart from mechanical system. These vehicles have a goal of achieving better fuel efficiency along with reduced emissions making it customer as well as environment friendly. Idle start-stop is a key feature of NexGen vehicles, where, the Engine ECU switches to engine stop mode while idling to cut the fuel consumption and increase fuel efficiency. Engine restarts when there is an input from driver to run the vehicle. There is always a clash between the Engine ECU and automatic climate control unit (Auto-AC) either to enter idle stop mode for better fuel efficiency or inhibit idle stop mode to keep the compressor running for driver comfort. This clash can be resolved in two ways: 1 Hardware change and, 2 Software change Hardware change leads to increase in cost, validation effort and time.
Technical Paper

Implementation of Atkinson Effect for Improved Fuel Efficiency of Gasoline Engine Using 1-D Simulation Software and its Validation with Experimental Data

2021-09-22
2021-26-0053
In order to meet the challenges of future CAFE regulations & pollutant emission, vehicle fuel efficiency must be improved upon without compromising vehicle performance. Optimization of engine breathing & its impact on vehicle level fuel economy, performance needs balance between conflicting requirements of vehicle Fuel Economy, performance & drivability. In this study a Port Fuel Injection, naturally aspirated small passenger car gasoline engine was selected which was being used in a typical small passenger car. Simulation approach was used to investigate vehicle fuel economy and performance, where-in 1D CFD Engine model was used to investigate and optimize Valve train events (Intake and exhaust valve open and close timings) for best fuel economy. Engine Simulation software is physics based and uses a phenomenological approach 0-D turbulent combustion model to calculate engine performance parameters. Engine simulation model was calibrated within 95% accuracy of test data.
Technical Paper

In-Cylinder Charge Motion Development for Gasoline Engine

2021-09-22
2021-26-0062
In the recent years world-wide automotive manufacturers are continuously working in the research of the suiTable technical solutions to meet upcoming stringent carbon dioxide (CO2) emission targets, defined by regulatory authorities across the world. Many technologies have been already developed, or are currently under study, to meet the legislated targets. To meet this objective, the generation of tumble at intake stroke and the conservation of turbulence intensity at the end of compression stroke inside the combustion chamber have a significant role in the contribution towards accelerating the burning rate, increasing the thermal efficiency and reducing the cyclic variability [1]. Tumble generation is mainly attained by intake port design, and conservation is achieved during the end of compression stroke 690 ~ 720 crank angles (CA) which is strictly affected by the piston bowl geometry and pentroof combustion chamber shape.
Technical Paper

Intake and Exhaust Ports Design for Tumble and Mass Flow Rate Improvements in Gasoline Engine

2019-04-02
2019-01-0763
In recent years, world-wide automotive manufacturers have been continuously working in the research of suitable technical solutions to meet upcoming stringent carbon dioxide (CO2) emission targets, as defined by international regulatory authorities. Many technologies have been already developed, or are currently under study, to meet legislated targets. In-line with above objective, the enhancement of turbulence intensity inside the combustion chamber has a significant importance which contributes to accelerating the burning rate, to increase the thermal efficiency and to reduce the cyclic variability [9]. Turbulence generation is mainly achieved during the intake stroke which is strictly affected by the intake port geometry, orientation and to certain extends by combustion chamber masking. Conservation of turbulence intensity till 700~720 crank angle (CA) is achieved by optimized shape of combustion chamber geometry and piston bowl shape.
Technical Paper

Methodology for Establishing Damage Criteria Using Probability Distribution Function on Component Level Tests - a Case Study

2016-02-01
2016-28-0041
Automobile components are usually subjected to complex varying loads. Thus, fatigue failure is a common mode of failure in automobile components. Accurately predicting the fatigue life is the key point for light weight and also reliability design of automobile components. Various life prediction theories are being used in the automotive industry for damage analysis using material S-N curves. However, due to variability in manufacturing, material spec etc. it is difficult to predict the experimental lives using conventional theories. Probability based statistical modeling is prevalent in the industry for life prediction. Probabilistic plots of cycles to failure to constant amplitude loads are plotted and used for prediction purpose. As the component is subjected to varying loads in real world, defining a single parameter i.e. damage would be more relevant compared to loads.
Technical Paper

Methodology for Failure Simulation Using 4 Corner 6 DOF Road Load Simulator of Overhanging Components: An Experimental Approach

2019-11-21
2019-28-2404
Nowadays, Road Load Simulators are used by automobile companies to reproduce the accurate and multi axial stresses in test parts to simulate the real loading conditions. The road conditions are simulated in lab by measuring the customer usage data by sensors like Wheel Force transducers, accelerometers, displacement sensors and strain gauges on the vehicle body and suspension parts. The acquired data is simulated in lab condition by generating ‘drive file’ using the response of the above mentioned sensors. Due to non- linear nature of the vehicle parts, transmissibility of load is a complex phenomenon. Due to this complex transmissibility, good simulation at wheel center does not always ensure good correlation at all vehicle locations. The low level of correlation is common at the locations like engine mount, horn bracket and other overhanging brackets which are away from the wheel center.
Technical Paper

NVH Improvement by Design Optimization in Radiator Fan Module

2015-01-14
2015-26-0141
With increase in product diversity in passenger car market, the need for NVH comfort has gained very strong foothold in every segment. This needs in depth analysis for limiting the noise at part level. Radiator Fan Module is one of such part which contributes to Cabin comfort in major way. In this paper, author is focusing on designing of RFM (Radiator Fan Module) in order to have low noise. Primary objective of RFM is to meet Heat rejection requirement with optimized air flow. Radiator Fan is primarily responsible for meeting air flow requirement within specified noise limit. For flow inducing components like Radiator Fan, there is always a trade-off between the functional requirement and the noise from various sources (Electrical / Mechanical / Flow). Design of Fan blades and Motor Support ribs in RFM is critical to improve Flow noise, i.e. Air cutting noise.
Technical Paper

Optimization of Radiator Fan for NVH Improvement

2017-01-10
2017-26-0210
With the development of automobile industry, customer awareness about NVH (Noise, Vibration and Harshness) levels in passenger vehicles and demands for improving the riding comfort has increased. This has prompted automobile OEMs to address these parameters in design stage by investing resources in NVH research and development for all components. Better NVH of Radiator Fan Module (RFM) is one of the parameters which contributes to cabin comfort. The basic objective of RFM is to meet engine heat rejection requirements with optimized heat transfer and air flow while maintaining NVH within acceptable levels. The rotating fan (generally driven by an electric motor), if not balanced properly, can be a major source of vibration in the RFM. The vibration generated thus, can be felt by customer through the vehicle body.
Technical Paper

Study of Electronic Thermostat on Performance & Fuel Economy of Naturally Aspirated Gasoline Engine

2022-10-05
2022-28-0018
In view of global concern for greenhouse gas emissions, need for greener and efficient Engines is increasing. Hence is it imperative that Internal Combustion Engines are improved in terms of efficiency to reduce Greenhouse gas emissions and meet CAFE targets. The cooling system of an ICE plays a major role in a vehicle performance. In this system, the radiator, thermostat, and cooling fan are the main components. Conventional cooling system uses Wax-type thermostat which is activated at specified coolant temperature and maintain same coolant temperature in fully warmed up condition at all engine operating points. Operative temperature selection in Wax-type is trade-off between engine friction & thermal efficiency at lower loads & knocking at higher loads. An electronic thermostat is a good alternative to maintain optimum temperature as per operating point requirement since optimum temperature at different operating points can be different.
X