Refine Your Search

Topic

Search Results

Technical Paper

3-Dimensional Numerical Simulation and Research on Internal Flow about Different EGR Rates in Venturi Tube of EGR System for a Turbocharged Diesel Engine

2024-04-09
2024-01-2418
Exhaust gas recirculation technology is one of the main methods to reduce engine emissions. The pressure of the intake pipe of turbocharged direct-injection diesel engine is high, and it is difficult to realize EGR technology. The application of Venturi tube can easily solve this problem. In this paper, the working principle of guide-injection Venturi tube is introduced, the EGR system and structure of a turbocharged diesel engine using the guide-injection Venturi tube are studied. According to the working principle of EGR system of turbocharged diesel engine, the model of guide-injection Venturi tube is established, the calculation grid is divided, and it is carried out by using Computational Fluid Dynamics method that the three-dimensional numerical simulation of the internal flow of Venturi tube under different EGR rates injection.
Technical Paper

Catalytic Characteristic and Application Performance of Catalyzed DPFs Coated with Various Content of Precious Metal in China

2017-10-08
2017-01-2379
Recent toxicological and epidemiologic studies have shown that diesel emissions have been a significant toxic air contaminant. Catalyzed DPF (CDPF) not only significantly reduces the PM mass emissions (>90%), but also further promotes carrier self-regeneration and oxidize more harmful gaseous pollutants by the catalyst coated on the carrier. However, some ultrafine particles and potentially harmful gaseous pollutants, such as VOCs species, originally emitted in the vapor-phase at high plume temperature, may penetrate through the CDPF filter. Furthermore, the components and content of catalyst coated on the CDPF could influence the physicochemical properties and toxicity intensity of those escaping ultrafine particles and gaseous pollutants. In this work, (1) we investigated the influence of precious metal content as a variable parameter on the physicochemical properties and catalytic activities of the small CDPF samples.
Technical Paper

Characteristics of Combustion and Emissions in a DI Engine Fueled with Biodiesel Blends from Soybean Oil

2008-06-23
2008-01-1832
Combustion and emission characteristics of diesel and biodiesel blends (soybean methyl ester) were studied in a single-cylinder Direct Injection (DI) engine at different loads and a constant speed. The results show that NOx emission and fuel consumption are increased with increasing biodiesel percentage. Reduction of smoke opacity is significant at higher loads with a higher biodiesel ratio. Compared with the baseline diesel fuel, B20 (20% biodiesel) has a slight increase of NOx emission and similar fuel consumption. Smoke emission of B20 is close to that of diesel fuel. Results of combustion analysis indicate that start of combustion (SOC) for biodiesel blends is earlier than that for diesel. Higher biodiesel percentage results in earlier SOC. Earlier SOC for biodiesel blends is due to advanced injection timing from higher density and bulk modulus and lower ignition delay from higher cetane number.
Technical Paper

Characteristics of Three-way Catalyst during Quickly Start-up Process in a PFI Engine for HEV Application

2009-04-20
2009-01-1325
The characteristics of three-way-catalyst during engine start process were investigated based on a simulated start/stop test system for HEV application. Although the catalyst has already reached its light-off temperature, the conversion efficiency is poor during engine start process due to the deviation of lambda from stoichiometric. The high concentration hydrocarbon emission spike can be stored by catalyst substrate temporarily, then it is released. This dynamic process decreases the conversion efficiency for the following exhaust hydrocarbon emission. When the initial temperature of catalyst substrate before engine start increased from 150°C to 400°C, the conversion efficiency for both the hydrocarbon and NO are increased.
Technical Paper

Characteristics of Transient NOx Emissions of HEV under Real Road Driving

2020-04-14
2020-01-0380
To meet the request of China National 6b emission regulations which will be officially implemented in China, firstly including the RDE emission test limits, the transient emissions on real road condition are paid more attention. A non-plug-in hybrid light-duty gasoline vehicles (HEV) sold in the Chinese market was selected to study real road emissions employed fast response NOx analyzer from Cambustion Ltd. with a sampling frequency of 100Hz, which can measure the missing NO peaks by standard RDE gas analyzer now. Emissions from PEMS were also recorded and compared with the results from fast response NOx analyzer. The concentration of NOx emissions before and after the Three Way Catalyst (TWC) of the hybrid vehicle were also sampled and analyzed, and the working efficiency of the TWC in real road driving process was investigated.
Technical Paper

Combined Technologies for Efficiency Improvement on a 1.0 L Turbocharged GDI Engine

2019-04-02
2019-01-0233
The CO2 reduction request for automotive industry promotes the efforts on the engine thermal efficiency improvement. The goal of this research is to improve the thermal efficiency on an extremely downsized 3-cylinder 1.0 L turbocharged gasoline direct injection engine. Effects of compression ratio, exhaust gas recirculation (EGR), valve timing and viscosity of oil on fuel economy were studied. The results show that increasing compression ratio, from 9.6 to 12, can improve fuel economy at relative low load (below 12 bar BMEP), but has a negative effect at high load due to increased knock intensity. EGR can significantly reduce the pumping loss at low load, optimize combustion phase and reduce exhaust gas temperature. Therefore, the fuel consumption is reduced at all test points. The average brake thermal efficiency (BTE) benefit percentage is 3.47% with 9.6 compression ratio and 5.33 % with 12 compression ratio.
Technical Paper

Effect of EGR Temperature on PFI Gasoline Engine Combustion and Emissions

2017-10-08
2017-01-2235
In order to investigate the impacts of recirculated exhaust gas temperature on gasoline engine combustion and emissions, an experimental study has been conducted on a turbocharged PFI gasoline engine. The engine was equipped with a high pressure cooled EGR system, in which different EGR temperatures were realized by using different EGR coolants. The engine ran at 2000 r/min and 3000 r/min, and the BMEP varied from 0.2MPa to 1.0MPa with the step of 0.2MPa. At each case, there were three conditions: 0% EGR, 10% LT-EGR, 10% HT-EGR. The results indicated that LT-EGR had a longer combustion duration compared with HT-EGR. When BMEP was 1.0 MPa, CA50 of HT-EGR advanced about 5oCA. However, CA50 of LT-EGR could still keep steady and in appropriate range, which guaranteed good combustion efficiency. Besides, LT-EGR had lower exhaust gas temperature, which could help to suppress knock. And its lower exhaust gas temperature could reduce heat loss. These contributed to fuel consumption reduction.
Technical Paper

Effect of Ethanol Reforming Gas Combined with EGR on Lean Combustion Characteristics of Direct Injection Gasoline Engine

2022-03-29
2022-01-0428
Ethanol reforming gas combined with EGR technology can not only improve thermal efficiency, but also reduce pollutant emission under lean combustion condition. In this investigation, GT-Power is used to carry out one-dimensional simulation model calculation and analysis to explore the combustion characteristics, economy performance of a direct injection gasoline engine when the excess air coefficient (λ) increases from 1 to 1.3 and the ethanol reforming gas mixing ratio increases from 0% to 30% at the working condition of 2000 r/min and 10 bar. Then the EGR system is introduced to deeply discuss the working characteristics of the direct injection gasoline engine when the EGR rate increases from 0% to 20%. The results show that the increase of λ leads to the decrease of in-cylinder pressure and the delay of the peak of cylinder pressure.
Technical Paper

Effect of Hydrous Ethanol Combined with EGR on Performance of GDI Engine

2020-04-14
2020-01-0348
In recent years, particulate matters (PM) emissions from gasoline direct injection (GDI) engines have been gradually paid attention to, and the hydrous ethanol has a high oxygen content and a fast burning rate, which can effectively improve the combustion environment. In addition, Exhaust gas recirculation (EGR) can effectively reduce engine NOx emissions, and combining EGR technology with GDI engines is becoming a new research direction. In this study, the effects of hydrous ethanol gasoline blends on the combustion and emission characteristics of GDI engines are analyzed through bench test. The results show that the increase of the proportion of hydrous ethanol can accelerate the burning rate, shorten the combustion duration by 7°crank angle (CA), advance the peak moment of in-cylinder pressure and rate of heat release (RoHR) and improve the combustion efficiency. The hydrous ethanol gasoline blends can effectively improve the gaseous and PM emissions of the GDI engine.
Technical Paper

Effects of DOC and CDPF Catalyst Composition on Emission Characteristics of Light-Duty Diesel Engine with DOC + CDPF + SCR System

2018-04-03
2018-01-0337
With regulatory standards for diesel engine emissions becoming stricter worldwide, integrated catalytic systems are becoming increasingly necessary. One of the better approaches is to use an after-treatment system consisting of a diesel oxidation catalyst (DOC), a catalyzed diesel particulate filter (CDPF), and a selective catalytic reduction (SCR), but many factors can affect how well this system works. This study investigates the effects of DOC and CDPF catalyst composition on emissions characteristics for DOC + CDPF + SCR systems by collecting reactor and engine data. The reactor results show that the light-off temperatures (T50) of CO and C3H6 increase with the growth of Pt:Pd ratio while the T50 of NO degrades. An engine dynamometer test was conducted on a light-duty diesel engine equipped with DOC + CDPF + SCR. The results show light-off curves of CO and THC that are smoother than the reactor data.
Technical Paper

Effects of Zeolite Structure, Cu Content, Feed Gas Space Velocity, NH3/NOx Ratio, and Sulfur Poisoning on the Performance of Zeolite-Based SCR Catalyst

2019-04-02
2019-01-0736
To meet the increasingly stringent nitrogen oxides (NOx) emission regulations of diesel engines, the selective catalytic reduction (SCR) of NOx with ammonia (NH3) has become the current mainstream technical route. Experiments in the present study included the performance of Cu-Beta catalyst and Cu-CHA catalyst before and after hydrothermal aging, and the effects of Cu content, feed gas space velocity (GHSV), NH3/NOx ratio, and sulfur poisoning on the performance of Cu-CHA catalyst. In the low temperature range (T≤250 °C), the T50 and T90 of Cu-Beta catalyst are 139 °C and 165 °C, respectively, while those of Cu-CHA catalyst are 150 °C and 183 °C, respectively. In the high temperature range (T>400 °C), the NOx conversion of Cu-CHA catalyst is generally higher than that of Cu-Beta catalyst. The temperature window of Cu-Beta catalyst is 154 to 514 °C, while that of Cu-CHA catalyst is 168 to 522 °C. Cu-CHA catalyst exhibits better catalytic activity at medium and high temperatures.
Technical Paper

Emission Characteristics of a Light Diesel Engine with PNA under Different Coupling Modes of EHC and Aftertreatment System

2023-04-11
2023-01-0268
With the continuous upgrading of emission regulations, NOx emission limit is becoming more and more strict, especially in the cold start phase. Passive NOx absorber (PNA) can adsorb NOx at a relatively low exhaust temperature, electrically heated catalyst (EHC) has great potential to improve exhaust gas temperature and reduce pollutant emissions of diesel engines at cold start conditions, while experimental research on the combined use of these two kinds of catalysts and the coupling mode of the electrically heated catalyst and the aftertreatment system under the cold start condition are lacking. In this paper, under a certain cold start and medium-high temperature phase, the exhaust gas temperature and emission characteristics of PNA, EHC and aftertreatment system under different coupling modes were studied.
Technical Paper

Improvement on Energy Efficiency of the Spark Ignition System

2017-03-28
2017-01-0678
Future clean combustion engines tend to increase the cylinder charge to achieve better fuel economy and lower exhaust emissions. The increase of the cylinder charge is often associated with either excessive air admission or exhaust gas recirculation, which leads to unfavorable ignition conditions at the ignition point. Advanced ignition methods and systems have progressed rapidly in recent years in order to suffice the current and future engine development, and a simple increase of energy of the inductive ignition system does not often provide the desired results from a cost-benefit point of view. Proper design of the ignition system circuit is required to achieve certain spark performances.
Technical Paper

Investigating the Effect of Water and Oxygen Distributions on Consistency of Current Density Using a Quasi-Three-Dimensional Model of a PEM Fuel Cell

2021-04-06
2021-01-0737
Activation loss, mass transfer loss and ohmic loss are the three main voltage losses of the polymer electrolyte membrane fuel cell. While the former two types are relevant to concentration of oxygen in catalyst layer and the later one is associated with the water content in membrane. Distributions of water content and oxygen in a single cell are inconsistent which cause that current densities in each segment of the single cell are different. For the dry inlet gas, the water in the segments near the gas inlet channel will be carried to the segments near the gas outlet channel, which causes high ohmic loss of the segments near the gas inlet channel. In this work, a transfer non-isothermal quasi-three-dimensional model is developed to investigate inconsistency of current densities.
Technical Paper

Layer Coating on DPF for PN Emission Control

2023-04-11
2023-01-0384
China VI emission standards (Limits and measurement methods for emissions from diesel fueled heavy-duty vehicles, China VI, GB17691-2018) have strict particle number (PN) emission standards and so the coated diesel particulate filter (DPF) technology from the EU and US market has challenge in meeting the regulation. Hence, a coated DPF with higher PN filtration efficiency (FE) is required. Currently, there are two approaches. One is from the DPF substrate standpoint by using small pore size DPF substrate. The other is from the coating side to develop a novel coating technology. Through the second approach, a layer coating process has been developed. The coated DPF has an on-wall catalytic layer from inlet side and an in-wall catalytic coating from outlet side. The DPF has improved PN filtration efficiency and can meet China VI regulation without any pre-treatment. It has lowered soot loading back pressure (SLBP), compared to the DPF with small pore size.
Technical Paper

Matching Optimum for Low HC and CO Emissions at Warm-up Phase in an LPG EFI Small SI Engine

2005-10-24
2005-01-3897
Based on a 125cm3 single cylinder SI engine, the designated idle speed was controlled by adjusting of cycle ignition advance angle. By analyzing the effects of different idle speed and throttle open position on three way catalyst (TWC) light-off time and conversion efficiency of HC and CO emissions, combined with the corresponding total HC and CO emissions level, the optimum idle speed and throttle open position at engine's warm-up phase were found by the matching optimum. The present method for engine control strategy is helpful to optimize the warm-up phase emission levels in SI engine with LPG fuel.
Journal Article

Performance Optimization Using ANN-SA Approach for VVA System in Diesel Engine

2022-03-29
2022-01-0628
Diesel engine is vital in the industry for its characteristics of low fuel consumption, high-torque, reliability, and durability. Existing diesel engine technology has reached the upper limit. It is difficult to break through the fuel consumption and emission of diesel engines. VVA (Variable Valve Actuation) is a new technology in the field of the diesel engines. In this paper, GT-Suite and ANN (artificial neural network) model are established based on engine experimental data and DoE simulation results. By inputting Intake Valve Opening crake angle (IVO), Intake Valve Angle Multiplier (IVAM) and Exhaust Valve Angle Multiplier (EVAM) into the ANN Model, and by using SA (simulated annealing algorithm), the optimized results of intake and exhaust valve lift under the target conditions are obtained.
Journal Article

Study of the Combustion Characteristics of a HCCI Engine Coupled with Oxy-Fuel Combustion Mode

2017-03-28
2017-01-0649
The present work proposed to implement oxy-fuel combustion mode into a homogeneous charge compression ignition engine to reduce complexity in engine emissions after-treatment and lower carbon dioxide emission. The combination of oxy-fuel combustion mode with homogeneous charge compression ignition engine can be further optimized by the utilization of direct high temperature and pressure water injection to improve cycle performance. A retrofitted conventional diesel engine coupled with port fuel injection and direct water injection is utilized in this study. A self-designed oxygen and carbon dioxide mixture intake system with flexible oxygen fraction adjustment ability is implemented in the test bench to simulate the adoption of exhaust gas recirculation. Water injection system is directly installed in the combustion chamber with a modified high speed solenoid diesel injector.
Technical Paper

Study on Correlation between After-Treatment Performance and Running Conditions, Exhaust Parameters of Heavy-Duty Diesel Vehicle

2018-04-03
2018-01-0338
The increasingly stringent emission regulations have mandated the use of CCRT (catalyzed continuously regeneration trap) made by upstream DOC (diesel oxidation catalyst) and downstream CDPF (catalyzed diesel particulate filter) for heavy-duty diesel vehicles, which is proved to be the only way that can efficiently control the gaseous and particulate emissions. The performance of after-treatment is greatly influenced by the running conditions of the diesel vehicle and its exhaust parameters, so this paper intended to use grey relational analysis to study the correlation between running conditions (velocity, acceleration, VSP (vehicle specific power)), exhaust parameters (exhaust flow rate, DOC inlet temperature, concentrations of CO, THC, O2 and NOX) and the performance of DOC and CCRT based on chassis dynamometer test. Results showed that the effect of DOC on CO and THC is mainly affected by exhaust flow rate, exhaust temperature and THC concentration.
Journal Article

Study on Soot Oxidation Characteristics of Ce and La Modified Pt-Pd CDPF Catalysts

2023-04-11
2023-01-0390
The catalyzed diesel particulate filter with Pt and Pd noble metals as the main loaded active components are widely used in the field of automobile engines, but the high cost makes it face huge challenges. Rare earth element doping can improve the soot oxidation performance of the catalyzed diesel particulate filter and provide a new way to reduce its cost. In this paper, thermogravimetric tests and chemical reaction kinetic calculations were used to explore the effect of Pt-Pd catalysts doped Ce, and La rare earth elements on the oxidation properties of soot. The results shown that, among Pt-Pd-5%Ce, Pt-Pd-5%La, and Pt-Pd-5%Ce-5%La catalysts, Pt-Pd-5%La catalyst has the highest soot conversion, the highest low-temperature oxidation speed, and the activation energy is the smallest. Compared with soot, this catalyst reduced T10 and T20 by 82% and 26%, respectively, meaning the catalytic activity of Pt-Pd-5%La catalyst was the best.
X