Refine Your Search

Topic

Author

Search Results

Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

Active Damping of Engine Idle Speed Oscillation by Applying Adaptive Pid Control

2001-03-05
2001-01-0261
This paper investigates the use of an adaptive proportional-integral-derivative (APID) controller to reduce a combustion engine crankshaft speed pulsation. Both computer simulations and engine test rig experiments are used to validate the proposed control scheme. The starter/alternator (S/A) is used as the actuator for engine speed control. The S/A is an induction machine. It produces a supplemental torque source to cancel out the fast engine torque variation. This machine is placed on the engine crankshaft. The impact of the slowly varying changes in engine operating conditions is accounted for by adjusting the APID controller parameters on-line. The APID control scheme tunes the PID controller parameters by using the theory of adaptive interaction. The tuning algorithm determines a set of PID parameters by minimizing an error function. The error function is a weighted combination of the plant states and the required control effort.
Technical Paper

Aging Simulation of Electric Vehicle Battery Cell Using Experimental Data

2021-04-06
2021-01-0763
The adoption of lithium-ion batteries in vehicle electrification is fast growing due to high power and energy demand on hybrid and electric vehicles. However, the battery overall performance changes with time through the vehicle life. This paper investigates the electric vehicle battery cell aging under different usages. Battery cell experimental data including open circuit voltage and internal resistance is utilized to build a typical electric vehicle model in the AVL-Cruise platform. Four driving cycles (WLTP, UDDS, HWFET, and US06) with different ambient temperatures are simulated to acquire the battery cell terminal currents. These battery cell terminal current data are inputs to the MATLAB/Simulink battery aging model. Simulation results show that battery degrades quickly in high ambient temperatures. After 15,000 hours usage in 50 degrees Celsius ambient temperature, the usable cell capacity is reduced up to 25%.
Technical Paper

Characterization and Comparison of Two Hybrid Electric Vehicles (HEVs) - Honda Insight and Toyota Prius

2001-03-05
2001-01-1335
Two limited-production hybrid electric vehicles (HEVs) - a 1988 Japanese model Toyota Prius and a 2000 Honda Insight - were tested at Argonne National Laboratory to collect data from vehicle component and systems operation. The test data are used to analyze operation and efficiency and to help validate computer simulation models. Both HEVs have FTP fuel economy greater than 45 miles per gallon and also have attributes very similar to those of conventional gasoline vehicles, even though each HEV has a unique powertrain configuration and operation control strategy. The designs and characteristics of these vehicles are of interest because they represent production technology with all the compromises for production included. This paper will explore both designs, their control strategies, and under what conditions high fuel economy was achieved.
Technical Paper

Characterization and Simulation of a Unit Injector

1975-02-01
750773
The characteristics of the diesel engine unit injector were studied both theoretically and experimentally. The transient fuel pressure in the unit injector was indirectly measured by using strain gauges placed in different locations on the drive train, between the cam and plunger. The events which take place during the injection process were analyzed and the effects of several design and operating variables on the different injection parameters were determined. Computer simulation showed a fairly good agreement between computed and experimental results.
Technical Paper

Computational Investigation of Hydrogen-Air Mixing in a Large-Bore Locomotive Dual Fuel Engine

2024-04-09
2024-01-2694
The internal combustion engine (ICE) has long dominated the heavy-duty sector by using liquid fossil fuels such as diesel but global commitments by countries and OEMs to reduce lifecycle carbon dioxide (CO2) emissions has garnered interest in alternative fuels like hydrogen. Hydrogen is a unique gaseous fuel that contains zero carbon atoms and has desired thermodynamic properties of high energy density per unit mass and high flame speeds. However, there are challenges related to its adoption to the heavy-duty sector as a drop-in fuel replacement for compression ignition (CI) diesel combustion given its high autoignition resistance. To overcome this fundamental barrier, engine manufacturers are exploring dual fuel combustion engines by substituting a fraction of the diesel fuel with hydrogen which enables fuel flexibility when there is no infrastructure and retrofittability to existing platforms.
Technical Paper

Defining the Boundary Conditions of the CFR Engine under MON Conditions, and Evaluating Chemical Kinetic Predictions at RON and MON for PRFs

2021-04-06
2021-01-0469
Expanding upon the authors’ previous work which utilized a GT-Power model of the Cooperative Fuels Research (CFR) engine under Research Octane Number (RON) conditions, this work defines the boundary conditions of the CFR engine under Motored Octane Number (MON) test conditions. The GT-Power model was validated against experimental CFR engine data for primary reference fuel (PRF) blends between 60 and 100 under standard MON conditions, defining the full range of interest of MON for gasoline-type fuels. The CFR engine model utilizes a predictive turbulent flame propagation sub-model, and a chemical kinetic solver for the end-gas chemistry. The validation was performed simultaneously for thermodynamic and chemical kinetic parameters to match in-cylinder pressure conditions, burn rate, and knock point prediction with experimental data, requiring only minor modifications to the flame propagation model from previous model iterations.
Technical Paper

Development of a Plastic Manifold Noise Syntheses Technique

2001-03-05
2001-01-1144
The effects of engine noise in plastic manifolds has been a subject of study in the automotive Industry. Several SAE papers have been published on the subject. Most testing described requires access to engine dynamometers and other elaborate equipment. As part of a general study of plastic intake manifold noise characteristics, this study was undertaken to develop a synthesis bench for enabling low cost noise testing of plastic induction systems including plastic manifolds. Computer simulation of engine intake noise was used as part of a correlation between the plastic manifold synthesis bench and actual engine measurements. The Fast Fourier Transform (FFT) analysis provided analogous results between the predicted theoretical and two measured signals with a fundamental frequency at approximately 80 Hz. Qualitative and statistical comparisons of the time domain signals also proved equally favourable. Recommendations are included for further development of this approach.
Journal Article

Effects of Cavitation and Hydraulic Flip in 3-Hole GDI Injectors

2017-03-28
2017-01-0848
The performance of Gasoline Direct Injection (GDI) engines is governed by multiple physical processes such as the internal nozzle flow and the mixing of the liquid stream with the gaseous ambient environment. A detailed knowledge of these processes even for complex injectors is very important for improving the design and performance of combustion engines all the way to pollutant formation and emissions. However, many processes are still not completely understood, which is partly caused by their restricted experimental accessibility. Thus, high-fidelity simulations can be helpful to obtain further understanding of GDI injectors. In this work, advanced simulation and experimental methods are combined in order to study the spray characteristics of two different 3-hole GDI injectors.
Journal Article

High-Resolution X-Ray and Neutron Computed Tomography of an Engine Combustion Network Spray G Gasoline Injector

2017-03-28
2017-01-0824
Given the importance of the fuel-injection process on the combustion and emissions performance of gasoline direct injected engines, there has been significant recent interest in understanding the fluid dynamics within the injector, particularly around the needle and through the nozzles. The pressure losses and transients that occur in the flow passages above the needle are also of interest. Simulations of these injectors typically use the nominal design geometry, which does not always match the production geometry. Computed tomography (CT) using x-ray and neutron sources can be used to obtain the real geometry from production injectors, but there are trade-offs in using these techniques. X-ray CT provides high resolution, but cannot penetrate through the thicker parts of the injector. Neutron CT has excellent penetrating power but lower resolution.
Technical Paper

Identification and Characterization of Steady Spray Conditions in Convergent, Single-Hole Diesel Injectors

2019-04-02
2019-01-0281
Reduced-order models typically assume that the flow through the injector orifice is quasi-steady. The current study investigates to what extent this assumption is true and what factors may induce large-scale variations. Experimental data were collected from a single-hole metal injector with a smoothly converging hole and from a transparent facsimile. Gas, likely indicating cavitation, was observed in the nozzles. Surface roughness was a potential cause for the cavitation. Computations were employed using two engineering-level Computational Fluid Dynamics (CFD) codes that considered the possibility of cavitation. Neither computational model included these small surface features, and so did not predict internal cavitation. At steady state, it was found that initial conditions were of little consequence, even if they included bubbles within the sac. They however did modify the initial rate of injection by a few microseconds.
Technical Paper

Impact of Advanced Technologies on Energy Consumption of Advanced Electrified Medium-Duty Vehicles

2024-04-09
2024-01-2453
The National Highway Traffic Safety Administration (NHTSA) has been leading U.S. efforts related to the rulemaking process for Corporate Average Fuel Economy (CAFE) standards. Argonne National Laboratory, a U.S. Department of Energy (DOE) national laboratory, has developed a full-vehicle simulation tool called Autonomie that has become one of the industry standard tools for analyzing vehicle performance, energy consumption, and technology effectiveness. Through an Interagency Agreement, the DOE Argonne Site Office and Argonne National Laboratory have been tasked with conducting full vehicle simulation to support NHTSA CAFE rulemaking. This paper presents an innovative approach focused on large-scale simulation processes spanning standard regulatory driving cycles, diverse vehicle classes, and various timeframes. A key element of this approach is Autonomie’s capacity to integrate advanced engine technologies tailored to specific vehicle classes and powertrains.
Journal Article

Implementation of Child Biomechanical Neck Behaviour into the Hybrid III Crash Test Dummy

2008-04-14
2008-01-1120
This research focuses on comparing the biomechanical response of the head and neck of the Hybrid III 3-year-old anthropometric test device finite element model and pediatric cadaver data, under flexion-extension bending and axial tensile loading conditions. Previous experimental research characterized the quasi-static biomechanical response of the pediatric cervical spine under flexion-extension bending and tolerance in tensile distraction loading conditions. Significant differences in rotational and linear stiffness were found between the Hybrid III model and the pediatric cadaver data. In this research the biomechanical child cadaver neck response has been implemented into the 3-year-old Hybrid III child dummy FE model. An explicit finite element code (LS-DYNA) and the modified Hybrid III model were used to numerically simulate the previous cadaver tests and validate the altered Hybrid III neck.
Technical Paper

Integration of a Modal Energy and Emissions Model into a PNGV Vehicle Simulation Model, PSAT

2001-03-05
2001-01-0954
This paper describes the integration of a Modal Energy and Emissions Model (MEEM) into a hybrid-electric vehicle simulation model, the PNGV System Analytic Toolkits (PSAT). PSAT is a forward-looking computer simulation model for advanced-technology vehicles. MEEM is a vehicle fuel-consumption and emissions model developed by one of the authors for internal-combustion-engine (ICE) -powered vehicles. MEEM engine simulation module uses a power-demand physical model based on a parameterized analytical representation of engine fuel and emissions production. One major advantage of MEEM is that it does not rely on steady-state engine maps, which are usually not available for most production vehicles; rather, it depends on a list of engine parameters that are calibrated based on regular vehicle dynamometer testing. The integrated PSAT-MEEM model can be used effectively to predict fuel consumption and emissions of various ICE-powered vehicles with both conventional and hybrid power trains.
Technical Paper

Investigation of Nano-particulate Production From Low Temperature Combustion

2005-04-11
2005-01-0128
This paper describes the initial experiments and computational simulations aimed to measure and quantify the level of nano-sized particulate production from combustion in low temperature combustion (LTC). This work measures nano-sized particles in a laminar ethylene flame both by the use of small-angle x-ray scattering at the Advanced Photon Source and through a technique called thermophoretic sampling. Future experiments will perform similar measurements in a Rapid Compression Machine under conditions typical for HCCI engines. The simulation work involves the use of coupled Computational Fluid Dynamics (CFD) and Chemistry Kinetics codes to predict the fuel/air mixture composition and temperature distribution in the combustion region and directly complements the experimental work. The results show that nano-particles are created under rich, premixed conditions, even with low temperature reactions (T<2000K).
Technical Paper

Issues for Measuring Diesel Exhaust Particulates Using Laser Induced Incandescence

2001-03-05
2001-01-0217
A number of studies in the recent past have identified Laser Induced Incandescence (LII) as a versatile technique for measurement of soot concentration in flames. Recently, a number of researchers have focused their attention in adapting this technique to measure particulates in diesel exhausts. However, the agreement with established physical sampling techniques, such as the EPA recommended filter paper collection method, was found to be less than ideal. This paper reports our efforts to adapt this technique for diesel exhaust characterization. Many of the factors affecting LII signal were identified through computer modeling. Parameters that could not be determined through such a model were determined experimentally following a parametric study. Subsequently, LII measurements were performed in the exhaust of a modified lab burner, with conditions close to that of diesel engine exhausts.
Technical Paper

Large Eddy Simulation of a Reacting Spray Flame under Diesel Engine Conditions

2015-09-01
2015-01-1844
Reynolds-averaged Navier-Stokes (RANS) turbulence model has been used extensively for diesel engine simulations due to its computational efficiency and is expected to remain the workhorse computational fluid dynamics (CFD) tool for industry in the near future. Alternatively, large eddy simulations (LES) can potentially deal with complex flows and cover a large disparity of turbulence length scales, which makes this technique more and more attractive in the engine community. An n-dodecane spray flame (Spray A from Engine Combustion Network) was simulated using a dynamic structure LES model to understand the transient behavior of this turbulent flame. The liquid spray was treated with a traditional Lagrangian method and the gas-phase reaction was closed using a delta probability density function (PDF) combustion model. A 103-species skeletal mechanism was used for n-dodecane chemical kinetic model.
Technical Paper

Modeling of Dynamic Responses of Injectors for an Automotive Fuel Rail System

1999-03-01
1999-01-0795
This paper presents a computer model for simulating dynamic responses inside an injector of an automotive fuel rail system. The injector contains a filter at the top, a coil spring in the middle, and a needle and orifices at the bottom. The equations of motion for unsteady one-dimensional flow are derived for the fluid flowing through the injector. The needle motion is described by a second order ordinary differential equation. The forces exerted on the needle include the magnetic force that controls the opening and closing of the injector and the coil spring force. To account for the loss of kinetic energy, we define two loss factors Ka and Kb. The former describes the loss of kinetic energy as fluid enters the injector through the filter at the top, and the latter depicts that as fluid is ejected into a large chamber through the passage between the needle and the needle seat and across four orifices at the bottom of the injector.
Technical Paper

Noise Cancellation Technique for Automotive Intake Noise Using A Manifold Bridging Technique

2005-05-16
2005-01-2368
Due to considerable efforts of automobile manufacturers to attenuate various noise sources within the passenger compartment, other sources, including induction noise have become more noticeable. The present study investigates the feasibility of using a non-conventional noise cancellation technique to improve the acoustic performance of an automotive induction system by using acoustic energy derived from the exhaust manifold as the dynamic noise source to cancel intake noise. The validity of this technique was first investigated analytically using a computational engine simulation software program. Using these results, a physical model of the bridge was installed and tested on a motored engine. The realized attenuation of the intake noise was evaluated using conventional FFT analysis techniques as well as psychoacoustic metrics including loudness, sharpness, roughness and fluctuation strength.
Technical Paper

Prediction of Pressure Fluctuations Inside an Automotive Fuel Rail System

1999-03-01
1999-01-0561
A computer model is developed for predicting pressure fluctuations inside an automotive electronic fuel rail system, which consists of six injectors connected in series through pipelines and a pressure regulator. The pressure fluctuations are mainly caused by opening and closing of injectors fired in a particular order. The needles that control the opening and closing of the injectors are modeled by mass- spring-dashpot systems, whose equations of motion are governed by a second order ordinary differential equations. A similar second order ordinary differential equation is used to describe the motion of the membrane with nonlinear stiffness inside the pressure regulator. The responses of injectors and pressure regulator are coupled by unsteady one-dimensional flow through the pipelines. The pressure fluctuations are also required to satisfy a one-dimensional damped wave equation. To validate this computer model, pressure fluctuations inside injectors and pipelines are calculated.
X