Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

A Controlled EGR Cooling System for Heavy Duty Diesel Applications Using the Vehicle Engine Cooling System Simulation

2002-03-04
2002-01-0076
In order to comply with 2002 EPA emissions regulations, cooled exhaust gas recirculation (EGR) will be used by heavy duty (HD) diesel engine manufacturers as the primary means to reduce emissions of nitrogen oxides (NOx). A feedforward controlled EGR cooling system with a secondary electric water pump and proportional-integral-derivative (PID) feedback has been designed to cool the recirculated exhaust gas in order to better realize the benefits of EGR without overcooling the exhaust gas since overcooling leads to the fouling of the EGR cooler with acidic residues. A system without a variable controlled coolant flow rate is not able to achieve these goals because the exhaust temperature and the EGR schedule vary significantly, especially under transient and warm-up operating conditions. Simulation results presented in this paper have been determined using the Vehicle Engine Cooling System Simulation (VECSS) software, which has been developed and validated using actual engine data.
Technical Paper

A Modeling Study of the Exhaust Flow Rate and Temperature Effects on the Particulate Matter Thermal Oxidation Occurring during the Active Regeneration of a Diesel Particulate Filter

2015-04-14
2015-01-1044
Numerical models of aftertreatment devices are increasingly becoming indispensable tools in the development of aftertreatment systems that enable modern diesel engines to comply with exhaust emissions regulations while minimizing the cost and development time involved. Such a numerical model was developed at Michigan Technological University (MTU) [1] and demonstrated to be able to simulate the experimental data [2] in predicting the characteristic pressure drop and PM mass retained during passive oxidation [3] and active regeneration [4] of a catalyzed diesel particulate filter (CPF) on a Cummins ISL engine. One of the critical aspects of a calibrated numerical model is its usability - in other words, how useful is the model in predicting the pressure drop and the PM mass retained in another particulate filter on a different engine without the need for extensive recalibration.
Technical Paper

A Simulation Study of a Computer Controlled Cooling System for a Diesel Powered Truck

1984-11-01
841711
A set of control functions have been investigated for a computer controlled diesel cooling system, using the vehicle engine cooling system code. Various engine operating conditions such as the engine load, engine speed, and ambient temperature are considered as the controlling variables in the control loops. The truck simulated in the study was an International Harvester COF-9670 cab over chassis heavy-duty vehicle equipped with a standard cab heater, a Cummins NTC-350 diesel engine with a McCord radiator and standard cooling system components and after-cooler. The vehicle also had a Kysor fan-clutch and shutter system. Comparison simulation tests between the conventional cooling system and the computer controlled cooling system using the Vehicle-Engine-Cooling Computer System model under different ambient and route conditions show that the computer controlled cooling system would offer the following benefits: 1.
Technical Paper

A Study of the Vapor- and Particle-Phase Sulfur Species in the Heavy-Duty Diesel Engine EGR Cooler

1998-05-04
981423
To meet future NO, heavy-duty diesel emissions standards, exhaust gas recirculation (EGR) technology is likely to be used. To improve fuel economy and further lower emissions, the recirculated exhaust gas needs to be cooled, with the possibility that cooling of the exhaust gas may form sulfuric acid condensate in the EGR cooler. This corrosive condensate can cause EGR cooler failure and consequentially result in severe damage to the engine. Both a literature review and a preliminary experimental study were conducted. In this study, a manually controlled EGR system was installed on a 1995 Cummins Ml l-330E engine which was operated at EPA mode 9* (1800 rpm and 75% load). The Goksoyr-Ross method (1)** was used to measure the particle-phase sulfate and vapor-phase H2SO4 and SO2 at the inlet and outlet locations of the EGR cooler, obtaining H2SO4 and SO2 concentrations. About 0.5% of fuel sulfur in the EGR cooler was in the particle-phase.
Technical Paper

Development of the Enhanced Vehicle and Engine Cooling System Simulation and Application to Active Cooling Control

2005-04-11
2005-01-0697
The increasing complexity of vehicle engine cooling systems results in additional system interactions. Design and evaluation of such systems and related interactions requires a fully coupled detailed engine and cooling system model. The Vehicle Engine Cooling System Simulation (VECSS) developed at Michigan Technological University was enhanced by linking with GT-POWER for the engine/cycle analysis model. Enhanced VECSS (E-VECSS) predicts the effects of cooling system performance on engine performance including accessory power and fuel conversion efficiency. Along with the engine cycle, modeled components include the engine manifolds, turbocharger, radiator, charge-air-cooler, engine oil circuit, oil cooler, cab heater, coolant pump, thermostat, and fan. This tool was then applied to develop and simulate an actively controlled electric cooling system for a 12.7 liter diesel engine.
Technical Paper

Nonuniformity and NO2/NOx Ratio Effects on the SCR Performance under Transient Engine Conditions

2014-04-01
2014-01-1556
Selective catalytic reduction (SCR) systems are in use on heavy duty diesel engines for NOx control. An SCR NOx reduction efficiency of higher than 95% is required to meet the proposed increasingly stringent NOx emission standards and the 2014-2018 fuel consumption regulations. The complex engine exhaust conditions including the nonuniformity of temperature, flow, and maldistribution of NH3 present at the catalyst inlet need to be considered for improved performance of the SCR system. These factors cause the SCR to underperform negatively impacting the NOx reduction efficiency as well as the NH3 slip. In this study, the effects of the nonuniformity of temperature, flow velocity and maldistribution of NH3 on the SCR performance were investigated using 1-dimensional (1D) model simulations for a Cu-zeolite SCR. The model was previously calibrated and validated to reactor and steady-state and transient engine experimental data.
Technical Paper

Procedure Development and Experimental Study of Passive Particulate Matter Oxidation in a Diesel Catalyzed Particulate Filter

2012-04-16
2012-01-0851
The passive oxidation of particulate matter (PM) in a diesel catalyzed particulate filter (CPF) was investigated in a series of experiments performed on two engines. A total of ten tests were completed on a 2002 Cummins 246 kW (330 hp) ISM and a 2007 Cummins 272 kW (365 hp) ISL. Five tests were performed on each engine to determine if using engine technologies certified to different emissions regulations has an impact on the passive oxidation characteristics of the PM. A new experimental procedure for passive oxidation testing was developed and implemented for the experiments. In order to investigate the parameters of interest, the engines were initially operated at a steady state loading condition where the PM concentrations, flow rates, and temperatures were such that the accumulation of PM within the CPF was obtained in a controlled manner. This engine operating condition was maintained until a CPF PM loading of 2.2 ±0.2 g/L was obtained.
Technical Paper

The Dimensionless Correlation of Airflow for Vehicle Engine Cooling Systems

1991-02-01
910643
An analysis of vehicle engine cooling airflow by means of a one-dimensional, transient, compressible flow model was carried out and revealed that similarity theory could be applied to investigate the variation of the airflow with ambient and operating conditions. It was recognized that for a given vehicle engine cooling system, the cooling airflow behavior could be explained using several dimensionless parameters that involve the vehicle speed, fan speed, heat transfer rate through the radiator, ambient temperature and pressure, and the system characteristic dimension. Using the flow resistance and fan characteristics measured from a prototype cooling system and the computer simulation for the one-dimensional compressible flow model, a quantitative correlation of non-dimensional mass flow rate to three dimensionless parameters for a prototype heavy-duty truck was established. The results are presented in charts, tables, and formulas.
Technical Paper

The Effects of Ambient Temperature and Vehicle Load on a Diesel Powered Truck Cooling System Performance Using a Computer Simulation Program

1984-11-01
841710
A computer simulation model to predict the thermal responses of an on-highway heavy duty diesel truck in transient operation was used to study several important cooling system design and operating variables. The truck used in this study was an International Harvester COF-9670 cab-over-chassis vehicle equipped with a McCord radiator, Cummins NTC-350 diesel engine, Kysor fan-clutch and shutter system, aftercooler, and standard cab heater and cooling system components. Input data from several portions of a Columbus to Bloomington, Indiana route were used from the Vehicle Mission Simulation (VMS) program to determine engine and vehicle operating conditions for the computer simulation model. The thermostat-fan, thermostat-shutter-fan, and thermostat-winterfront-fan systems were studied.
Technical Paper

The Theoretical Development of Vehicle Engine Cooling Airflow Models Using Incompressible Flow Methods

1991-02-01
910644
A one-dimensional incompressible flow model covering the mechanisms involved in the airflow through an automotive radiator-shroud-fan system with no heat transfer was developed. An analytical expression to approximate the experimentally determined fan performance characteristics was used in conjunction with an analytical approach for this simplified cooling airflow model, and the solution is discussed with illustrations. A major result of this model is a closed form equation relating the transient velocity of the air to the vehicle speed, pressure rise characteristics and speed of the fan, as well as the dimensions and resistance of the radiator. This provides a basis for calculating cooling airflow rate under various conditions. The results of the incompressible flow analysis were further compared with the computational results obtained with a previously developed one-dimensional, transient, compressible flow model.
Technical Paper

The Use of the Vehicle Engine Cooling System Simulation as a Cooling System Diesel Tool

1988-02-01
880600
Enhanced VECSS simulation program was tested for use as a cooling system design tool. The design parameters indicated in the study were varying fan type, fan speed, engine power rating, radiator style and air conditioning condenser. The predicted temperature results were compared to the experimental data, and were found to follow the measured trends, and in cases when the exact parameters were simulated, were found to match the temperature amplitudes.
Technical Paper

The Vehicle Engine Cooling System Simulation Part 2 – Model Validation Using Transient Data

1999-03-01
1999-01-0241
The Vehicle Engine Cooling System Simulation (VECSS) computer code has been developed at the Michigan Technological University to simulate the thermal response of a cooling system for an on-highway heavy duty diesel powered truck under steady and transient operation. In Part 1 of this research, the code development and verification has been presented. The revised and enhanced VECSS (version 8.1) software is capable of simulating in real-time a Freightliner FLD 120 truck with a Detroit Diesel Series 60 engine, Behr McCord radiator, Allied signal / Garrett Automotive charge air cooler and turbocharger, Kysor DST variable speed fan clutch, DDC oil and coolant thermostat. Other cooling system components were run and compared with experimental data provided by Kysor Cooling Systems. The experimental data were collected using the Detroit Diesel Electronic Control's (DDEC) Electronic Control Module (ECM) and the Hewlett Packard (HP) data acquisition system.
Technical Paper

Variability in Particle Emission Measurements in the Heavy Duty Transient Test

1991-02-01
910738
A study of the sources of variability in particulate measurements using the Heavy-Duty Transient Test (40 CFR Subpart N) has been conducted. It consisted of several phases: a critical examination of the test procedures, visits to representative facilities to compare and contrast facility designs and test procedures, and development of a simplified model of the systems and procedures used for the Heavy-Duty Transient Test. Some of the sources of variability include; thermophoretic deposition of particulate matter onto walls of the sampling system followed by subsequent reentrainment in an unpredictable manner, the influence of dilution and cooling upon the soluble organic fraction, inconsistency among laboratories in the engine and dynamometer control strategies, and errors in measurements of flows into and out of the secondary dilution tunnel.
X