Refine Your Search

Search Results

Technical Paper

A Practical Approach to Consider Forming Effects for Full Vehicle Crash Application

2009-04-20
2009-01-0471
The forming effects along with strain rate, actual material properties and weld effects have been found to be very critical for accurate prediction of crash responses especially the prediction of local deformation. As a result, crash safety engineers started to consider these factors in crash models to improve the accuracy of CAE prediction and reduce prototype testing. The techniques needed to incorporate forming simulation results, including thickness change, residual stresses and strains, in crash models have been studied extensively and are well known in automotive CAE community. However, a challenge constantly faced by crash safety engineers is the availability of forming simulation results, which are usually supplied by groups conducting forming simulations. The forming simulation results can be obtained by either using incremental codes with actual stamping processes or one-step codes with final product information as a simplified approach.
Technical Paper

An Investigation of Spot-Welded Steel Connections Using a DOE Approach

2003-03-03
2003-01-0612
This paper presents an investigation into the behavior of spot-welded steel connections based on a DOE approach. This work is a part of spot-weld modeling methodology development work being performed at Ford. Control factors such as material, coating, gage size, and noise factors such as loading direction (angle), and speed are considered in this study. Different levels of each variable are included to cover a wide range of practical applications. The test methodology used to generate the responses for the spot-weld coupons have been discussed in a companion paper [1]. From the force-displacement curves obtained from the test, the responses such as peak force, displacement at peak force, and rupture displacement are identified. These responses are then statistically analyzed to identify the relative importance and effect of the design factors. Finally, response surface models are developed to determine responses across different levels of each variable.
Journal Article

Axial Crash Testing and Finite Element Modeling of A 12-Sided Steel Component

2010-04-12
2010-01-0379
To improve the energy absorption capacity of front-end structures during a vehicle crash, a novel 12-sided cross-section was developed and tested. Computer-aided engineering (CAE) studies showed superior axial crash performance of the 12-sided component over more conventional cross-sections. When produced from advanced high strength steels (AHSS), the 12-sided cross-section offers opportunities for significant mass-savings for crash energy absorbing components such as front or rear rails and crush tips. In this study, physical crash tests and CAE modeling were conducted on tapered 12-sided samples fabricated from AHSS. The effects of crash trigger holes, different steel grades and bake hardening on crash behavior were examined. Crash sensitivity was also studied by using two different part fabrication methods and two crash test methods. The 12-sided components showed regular folding mode and excellent energy absorption capacity in axial crash tests.
Technical Paper

Calibration and Validation of GISSMO Damage Model for A 780-MPa Third Generation Advanced High Strength Steel

2020-04-14
2020-01-0198
To evaluate vehicle crash performance in the early design stages, a reliable fracture model is needed in crash simulations to predict material fracture initiation and propagation. In this paper, a generalized incremental stress state dependent damage model (GISSMO) in LS-DYNA® was calibrated and validated for a 780-MPa third generation advanced high strength steels (AHSS), namely 780 XG3TM steel that combines high strength and ductility. The fracture locus of the 780 XG3TM steel was experimentally characterized under various stress states including uniaxial tension, shear, plane strain and equi-biaxial stretch conditions. A process to calibrate the parameters in the GISSMO model was developed and successfully applied to the 780 XG3TM steel using the fracture test data for these stress states.
Journal Article

Crash Performance Simulation of a Multilayer Thermoplastic Fuel Tank with Manufacturing and Assembly Consideration

2011-04-12
2011-01-0009
The modeling of plastic fuel tank systems for crash safety applications has been very challenging. The major challenges include the prediction of fuel sloshing in high speed impact conditions, the modeling of multilayer thermoplastic fuel tanks with post-forming (non-uniform) material properties, and the modeling of tank straps with pre-tensions. Extensive studies can be found in the literature to improve the prediction of fuel sloshing. However, little research had been conducted to model the post-forming fuel tank and to address the tension between the fuel tank and the tank straps for crash safety simulations. Hoping to help improve the modeling of fuel systems, the authors made the first attempt to tackle these major challenges all at once in this study by dividing the modeling of the fuel tank into eight stages. An ALE (Arbitrary Lagrangian-Eulerian) method was adopted to simulate the interaction between the fuel and the tank.
Technical Paper

Crashworthiness Simulation of Lower Control Arm Impact Tests

2005-04-11
2005-01-0361
Finite element models of cast aluminum and stamped steel lower control arms (LCAs) were created to simulate subsystem tests of LCA with bushings and brackets. Several modeling methods were used to simulate the dynamic responses of cast aluminum LCAs, and the advantages and disadvantages of each method are discussed. Factors that are essential for modeling stamped steel components found in previous studies [1, 2] including strain rate, forming, and welding effects are incorporated in the stamped steel LCA models. Difficulties in modeling LCAs subsystem, possible remedies, and further improvements are also discussed in this paper.
Technical Paper

Development of a Target Vehicle Model for Vehicle-to-Vehicle Frontal Compatibility Applications

2001-03-05
2001-01-1055
An accurate and robust target vehicle model was developed for vehicle compatibility applications. Although vehicle compatibility simulation involves a bullet vehicle hitting a target vehicle, the focus of this paper is to develop a target vehicle model. To ensure the robustness, the target vehicle model needs to provide reasonable responses under different impact conditions. This can be achieved by calibrating the model against different physical tests. Significant effort was taken to improve the accuracy of the target vehicle model. In the calibration process, some components were found to have significant effects on the global responses. These components play different roles in different crash modes. To improve the overall correlation with test, different component tests were also designed and conducted to understand the characteristics and improve the modeling of these critical components.
Technical Paper

Experimental and Numerical Studies of Crash Trigger Sensitivity in Frontal Impact

2005-04-11
2005-01-0355
Advanced High Strength Steels (AHSS) along with innovative design and manufacturing processes are effective ways to improve crash energy management. Crash trigger hole is another technology which can been used on front rails for controlling crash buckling mode, avoiding crash mode instability and minimizing variations in crash mode due to imperfections in materials, part geometry, manufacturing, and assembly processes etc. In this study, prototyped crash columns with different trigger hole shapes, sizes and locations were physically tested in frontal crash impact tests. A corresponding crash computer simulation model was then created to perform the correlation study. The testing data, such as crash force-displacement curves and dynamic crash modes, were used to verify the FEA crash model and to study the trigger sensitivity and effects on front rail crash performance.
Technical Paper

Finite Element Modeling of Spot Weld Connections In Crash Applications

2004-03-08
2004-01-0691
Spot welding is the primary joining method used for the construction of the automotive body structure made of steel. A major challenge in the crash simulation today is the lack of a simple yet reliable modeling approach to characterize spot weld separation. In this paper, an attempt has been made to develop a spot weld modeling methodology to characterize spot weld separation in crash simulation. A generalized two-node spring element with 6 DOF at each node is used to characterize the spot weld nugget. To represent the connection of the nugget with the surrounding plates, tied contacts are defined between the spring element nodes and the shell elements of the plate. Three general separation criteria are proposed for the spot weld that include the effects of speed and coupled loading conditions. The separation criteria are implemented into a commercially available explicit finite element code.
Technical Paper

Finite Element Modeling of the Frame for Body on Frame Vehicles, Part 1 - Subsystem Investigation

2004-03-08
2004-01-0688
For a body-on-frame (BOF) vehicle, the frame is the major structural subsystem to absorb the impact energy in a frontal vehicle impact. It is also a major contributor to energy absorption in rear impact events as well. Thus, the accuracy of the finite element frame model has significant influence on the quality of the BOF vehicle impact predictability. This study presents the latest development of the frame modeling methodology on the simulation of BOF vehicle impact performance. The development is divided into subsystem (frame sled test) and full system (full vehicle test). This paper presents the first phase, subsystem testing and modeling, of the frame modeling development. Based on the major deformation modes in frontal impact, the frame is cut into several sections and put on the sled to conduct various tests. The success of the sled test highly depends on whether the sled results can replicate the deformation modes in the full vehicle.
Journal Article

Fracture Modeling of AHSS in Component Crush Tests

2011-04-12
2011-01-0001
Advanced High Strength Steels (AHSS) have been implemented in the automotive industry to balance the requirements for vehicle crash safety, emissions, and fuel economy. With lower ductility compared to conventional steels, the fracture behavior of AHSS components has to be considered in vehicle crash simulations to achieve a reliable crashworthiness prediction. Without considering the fracture behavior, component fracture cannot be predicted and subsequently the crash energy absorbed by the fractured component can be over-estimated. In full vehicle simulations, failure to predict component fracture sometimes leads to less predicted intrusion. In this paper, the feasibility of using computer simulations in predicting fracture during crash deformation is studied.
Technical Paper

Impact Testing of Lower Control Arm for Crashworthiness Simulation

2005-04-11
2005-01-0352
The conversion between cast aluminum lower control arms (LCAs) and stamped steel LCAs has prompted the need for new LCA designs to achieve parallel levels of performance. Component tests procedures and CAE modeling methodologies need to be utilized to assess future LCA designs across a variety of vehicle lines to meet or exceed performance criteria. Therefore the overall goal of this study was to develop a standardized test procedure to test the stiffness, deformation and strength of LCAs. In addition, CAE modeling methodologies to better model LCAs will be developed. The test procedures and CAE modeling methodologies would then be used to set performance targets for future LCA designs. To standardize the LCA test procedure, component test fixtures were developed in this work. The objective of the fixtures is to test LCAs with similar boundary conditions they would experience in vehicle crash. Three different test modes are examined in this project.
Technical Paper

Important Modeling Practices in CAE Simulation for Vehicle Pitch and Drop

2006-04-03
2006-01-0124
Vehicle pitch and drop has become an important subject to crash analysis due to the recent FMVSS208 requirements for unbelted occupant. During frontal impact, the excessive header drop due to significant vehicle pitch and drop can induce the contact between occupant's head and sun visor. To avoid this issue, structure design for reducing vehicle pitch and drop is essential to crash safety. Historically, CAE simulation has been used in structure design during vehicle development process. Therefore, the quality of CAE modeling for replicating vehicle pitch and drop at physical test is crucial for assisting the structure design. In this paper, the most effective components in CAE model to vehicle pitch and drop have been identified and ranked by using the results of the sensitivity study. Hence the model quality can be emphasized on those major components including front horn, kick-down of front frame, body structure at upper load path, and body mounts.
Technical Paper

Macroscopic Constitutive Behaviors of Aluminum Honeycombs Under Dynamic Inclined Loads

2007-04-16
2007-01-0979
Macroscopic constitutive behaviors of aluminum 5052-H38 honeycombs under dynamic inclined loads with respect to the out-of-plane direction are investigated by experiments. The results of the dynamic crush tests indicate that as the impact velocity increases, the normal crush strength increases and the shear strength remains nearly the same for a fixed ratio of the normal to shear displacement rate. The experimental results suggest that the macroscopic yield surface of the honeycomb specimens as a function of the impact velocity under the given dynamic inclined loads is not governed by the isotropic hardening rule of the classical plasticity theory. As the impact velocity increases, the shape of the macroscopic yield surface changes, or more specifically, the curvature of the yield surface increases near the pure compression state.
Technical Paper

Mass Efficient Cross-Sections Using Dual Phase Steels For Axial and Bending Crushes

2007-04-16
2007-01-0978
Because of their excellent crash energy absorption capacity, dual phase (DP) steels are gradually replacing conventional High Strength Low Alloy (HSLA) steels for critical crash components in order to meet the more stringent vehicle crash safety regulations. To achieve optimal axial and bending crush performance using DP steels for crash components designed for crash energy absorption and/or intrusion resistance applications, the cross sections need to be optimized. Correlated crush simulation models were employed for the cross-section study. The models were developed using non-linear finite element code LS-DYNA and correlated to dynamic and quasi-static axial and bending crush tests on hexagonal and octagonal cross-sections made of DP590 steel. Several design concepts were proposed, the axial and bending crush performance in DP780 and DP980 were compared, and the potential mass savings were discussed.
Technical Paper

Methodology for Testing of Spot-Welded Steel Connections Under Static and Impact Loadings

2003-03-03
2003-01-0608
Spot-welds are the primary joining methods for steel sheet metals used in the manufacturing of automobile body structure. Often the impact responses are significantly affected by the characteristic properties, such as stiffness, failure strength, etc of spot-welds. In view of this, understanding the behavior and the properties of spot-welds under static and impact loadings are critical for accurate CAE analysis of vehicle impact events. To this end, a comprehensive DOE based spot-weld testing has been undertaken by considering a wide variety of variables. The test data thus obtained were analyzed to determine the requisite mechanical properties of spot-welds as a function of the key variables such as gage, yield strengths, speed, etc. Spot-weld connections have been tested for gages ranging from 0.7 to 3.0 mm using a unique specimen configuration developed at Ford.
Technical Paper

Modeling Energy Absorption and Deformation of Multicorner Columns in Lateral Bending

2006-04-03
2006-01-0123
The frame rail has an impact on the crash performance of body-on-frame (BOF) and uni-body vehicles. Recent developments in materials and forming technology have prompted research into improving the energy absorption and deformation mode of the frame rail design. It is worthwhile from a timing and cost standpoint to predict the behavior of the front rail in a crash situation through finite element techniques. This study focuses on improving the correlation of the frame component Finite Element model to physical test data through sensitivity analysis. The first part of the study concentrated on predicting and improving the performance of the front rail in a frontal crash [1]. However, frame rails in an offset crash or side crash undergo a large amount of bending. This paper discusses appropriate modeling and testing procedures for front rails in a bending situation.
Technical Paper

Modeling of Spot Weld under Impact Loading and Its Effect on Crash Simulation

2006-04-03
2006-01-0959
Spot weld is the primary joining method to assemble the automotive body structure. In any crash events some separation of spot-welds can be expected. However, if this happens in critical areas of the vehicle it can potentially affect the integrity of the structure. It will be beneficial to identify such issues through CAE simulation before prototypes are built and tested. This paper reports a spot weld modeling methodology to characterize spot weld separation and its application in full vehicle crash simulation. A generalized two-node spring element with 6 DOF at each node is used to model the spot weld. Separation of spot welds is modeled using three alternative rupture criteria defined in terms of peak force, displacement and energy. Component level crash tests are conducted using VIA sled at various impact speeds to determine mean crush load and identify possible separation of welds.
Journal Article

Modeling of an Advanced Steering Wheel and Column Assembly for Frontal and Side Impact Simulations

2014-04-01
2014-01-0803
This paper presents the final phase of a study to develop the modeling methodology for an advanced steering assembly with a safety-enhanced steering wheel and an adaptive energy absorbing steering column. For passenger cars built before the 1960s, the steering column was designed to control vehicle direction with a simple rigid rod. In severe frontal crashes, this type of design would often be displaced rearward toward the driver due to front-end crush of the vehicle. Consequently, collapsible, detachable, and other energy absorbing steering columns emerged to address this type of kinematics. These safety-enhanced steering columns allow frontal impact energy to be absorbed by collapsing or breaking the steering columns, thus reducing the potential for rearward column movement in severe crashes. Recently, more advanced steering column designs have been developed that can adapt to different crash conditions including crash severity, occupant mass/size, seat position, and seatbelt usage.
Technical Paper

Numerical Investigation of Effects of Frame Trigger Hole Location on Crash Behavior

2005-04-11
2005-01-0702
The front rail plays a very important role in vehicle crash. Trigger holes are commonly used to control frame crush mode due to their simple manufacturing process and flexibility for late changes in the product development phase. Therefore, a study, including CAE and testing, was conducted on a production front rail to understand the effects of trigger hole shape, size and orientation. The trigger hole location in the front rail also affects crash performance. Therefore, the effect of trigger hole location on front rail crash behavior was studied, and understanding these effects is the main objective of this study. A tapered front rail produced from 1.7 mm thick DP600 steel was used for the trigger hole location investigation. Front rails with different trigger spacing and sizes were tested using VIA sled test facility and the crash progress was simulated using a commercial code RADIOSS. The strain rate, welding and forming effects were incorporated in the front rail modeling.
X