Refine Your Search

Topic

Search Results

Technical Paper

2-D Imaging of Fuel Vapor Concentration in a Diesel Spray via Exciplex-Based Fluorescence Technique

1993-10-01
932652
To measure the fuel vapor concentration in an unsteady evaporating spray injected into nitrogen atmosphere, the exciplex-forming method, which produces spectrally separated fluorescence from the liquid and vapor phase, was applied in this study. Two experiments were conducted to investigate the qualitative and quantitative applicability of the technique in a high temperature and high pressure atmosphere during the fuel injection period. One is to examine the thermal decomposition of TMPD dopant at a high temperature and a high pressure nitrogen atmosphere during a short period of time. The other is to calibrate the relationship between fluorescence intensity and vapor concentration of TMPD at different vapor temperatures. And then, the qualitative measurement of fuel vapor concentration distributions in diesel sprays was made by applying the technique.
Technical Paper

2-D Soot Visualization in Unsteady Spray Flame by means of Laser Sheet Scattering Technique

1991-02-01
910223
The two-dimensional distribution of a soot cloud in an unsteady spray flame in a rapid compression machine(RCM) was visualized using the laser sheet scattering technique. A 40 mm x 50 mm cross section on the flame axis was illuminated by a thin laser sheet from a single pulsed Nd:YAG laser(wavelength 532 nm). Scattered light from soot particles was taken by a CCD camera via a high speed gated image intensifier. The temporal variation of the scattered light images were presented with the injection pressure as a parameter. The results showed that scattered light was intense near the periphery of the flame tip and that the scattered light becomes weaker significantly and disappears fast after the end of injection as injection pressure is increased. This technique was also applied to the visualization of the two-dimensional distribution of liquid droplets in the non-evaporating spray to correlate it with the soot concentration distribution.
Technical Paper

A Big Size Rapid Compression Machine for Fundamental Studies of Diesel Combustion

1981-09-01
811004
As a basic tool for fundamental studies on combustion and heat transfer in diesel engines, a new rapid compression machine with a cylinder bore of 200 mm was developed which can realize in it a free diesel flame in a quiescent atmosphere, a diesel flame in a swirl, and a diesel flame impinging on the wall. The piston of this machine is driven by high pressure nitrogen, and its speed is controlled by a sophisticated hydraulic system. This paper describes the details of the mechanism and performances of the machine, and presents some examples of studies conducted with this machine.
Technical Paper

A Gas Sampling Study on the Formation Processes of Soot and NO in a DI Diesel Engine

1980-02-01
800254
The concentrations of soot, NO and the other combustion products were measured by incylinder gas sampling in a DI diesel engine. The effects of injection timing, swirl ratio, and combustion chamber geometry on the formation and emission processes of soot and NO were studied. The following results were obtained: (1) Soot is promptly formed in the flame during the early combustion period where the equivalence ratio in the flame is high over 1.0. Thereafter almost all the formed soot is swiftly burnd up by oxidation during the middle combustion period. This process mainly determines the exhaust soot concentration. (2) NO is formed in the flame during the early and middle combustion period where the flame temperature is high over 2000 K. The highest NO concentration is observed at the flame tip swept by the air swirl. Though the concentration of the formed NO decreases by dilusion it nearly constant during the later combustion period.
Technical Paper

A New Technique for the Measurement of Sauter Mean Diameter of Droplets in Unsteady Dense Sprays

1989-02-01
890316
A new technique is developed for the in-situ measurement of Sauter mean diameter of droplets in non-evaporating transient dense sprays. This method analyzes the image of a shadowpicture of a spray based on the incident light extinction principle, and allows the sizing of Sauter mean diameter of whole droplets in a transient spray with any shape. In addition, this method allows the measurement of the local droplet size in a quasi-steady region of an axisymmetric spray if the conservation equations regarding mass and momentum are included in the calculation and data analysis. A calibration was carried out using glass beads as test particles: this was proved to have an accuracy of Sauter mean diameter measurement within 10%, on average. Applications of the new technique to both diesel and gasoline (EFI) sprays have been made.
Technical Paper

A Numerical Simulation of Ignition Delay in Diesel Engines

1998-02-23
980501
To investigate the ignition process in a diesel spray, the ignition in a transient fuel spray is analyzed numerically by a simple quasi-steady spray model coupled with the Shell kinetics model at various operating conditions and validity of this model is assessed by a comparison with existing experimental data. The calculated results indicate that the competition between the heat absorption of fuel and the hot air entrainment determines the equivalence ratio of mixtures favorable for the ignition to occur in the shortest time.
Technical Paper

A Photographic and Thermodynamic Study of Diesel Combustion in a Rapid Compression Machine

1981-02-01
810259
A diesel spray and flame in a quiescent atmosphere were realized without interference with combustion chamber walls in a newly constructed rapid compression machine. High speed shadow photography and pressure measurement were employed to obtain data for calculating the amount of air entrainment into the the flame and spray. From a comparison of air entrainment between the flame and spray, it turned out that when ignition delay becomes longer air entrainment into flames is promoted by the thermal expansion of multi-points ignition sources in the central region of the spray.
Technical Paper

A Study of Fuel Injection Systems in Diesel Engines

1976-02-01
760551
In this study, the authors show their analytical model of the fuel injection system in a diesel engine, which is constructed to be as accurate but as simple as possible and to have good application in the development of new fuel injection systems. In the first part, the authors initially describe the model assumptions, classification of injection phenomena, and fundamental equations considering the compressibility, inertia and viscocity of hydraulics and the movements of valves and other components to improve the accuracy of the systems. Secondly, regarding the experimental constants and physical properties of the fuel, the authors show the method of selection they used to simplify the analytical model and to get good agreement as a result but without losing physical meanings.
Technical Paper

A Study of the Structure of Diesel Sprays Using 2-D Imaging Techniques

1992-02-01
920107
The structure of dense sprays was investigated using 2-D imaging techniques. To investigate the mechanism of atomization, the liquid phase in a non-evaporating spray was visualized by a thin laser sheet formed by a single pulse from a Nd:YAG laser at the distance from 4 to 19 mm from the nozzle orifice with the injection pressure and the surrounding gas density as parameters. A new technique for the visualization of vapor phase in an evaporating spray, the SSI (Silicone particle Scattering Imaging) method, was proposed to investigate the structure of the vapor phase regions of the spray.
Technical Paper

A Study on Ignition Delay of Diesel Fuel Spray via Numerical Simulation

2000-06-19
2000-01-1892
To investigate the ignition process in a diesel spray, the ignition in a transient fuel spray is analyzed numerically by a discrete droplet spray model (DDM) coupled with the Shell kinetics model at various operating conditions. Predicted results show that the fuel mixture injected at the start of injection, which travels along midway between the spray axis and the spray periphery, contributes heavily to the first ignition in a spray. The equivalence ratio and temperature of the first ignited mixture are kept nearly constant until the start of hot ignition. The temperature of the first ignited mixture is kept at a constant value of higher temperature than the thermodynamic equilibrium temperature of the mixture before the hot ignition starts. The equivalence ratio of the first ignited mixture is around 1.6 at initial gas temperatures between 750 K and 850 K.
Technical Paper

A Study on Precise Measurement of Diesel Fuel Injection Rate

1992-02-01
920630
An experimental evaluation of the reliability of the Zeuch's method was carried out. The following were derived: 1) cavitation limits the minimum back pressure available; 2) the injection rate measured by the Zeuch's method agrees with that by the W.Bosch's method; 3) the effect of dynamic pressure of the injected fuel jet has a negligible effect on the pressure sensor which is attached to the chamber wall; and 4) the high-frequency noise after the end of injection observed in the Zeuch's measurement can be effectively removed by either a low-pass filter or an inverse Fourier transform processing.
Technical Paper

A Study on Soot Formation and Oxidation in an Unsteady Spray Flame via Laser Induced Incandescence and Scattering Techniques

1995-10-01
952451
Two kinds of planar soot imaging techniques, laser induced incandescence (LII) and laser induced scattering (LIS) techniques were applied simultaneously to an unsteady free spray flame achieved in a rapid compression machine. An analysis of LII and LIS images yielded three kinds of qualitative images of soot concentration, size of soot particles, and number density of soot in the flame. These images revealed the fact that the soot is formed mainly in the center region of a flame resulting in an appearance of soot cloud with high number density and small particle size in this region, and then the soot size increases and the number density decreases while soot is conveyed downstream.
Technical Paper

A Study on Soot Formation in Unsteady Spray Flames via 2-D Soot Imaging

1992-02-01
920114
The formation and oxidation processes of soot particles in unsteady spray flames were investigated in a quiescent atmosphere using 2-D laser sheet visualization. The mid-plane of a flame was illuminated twice during a short time-interval by a laser sheet from a double-pulsed YAG laser. An image pair of the scattered light from soot particles was taken by two intensified gated cameras in succession. The velocity vectors of soot clouds at various location in the sooting region were estimated using the spatial correlation between the image pair. The results of temporal and spatial variation of velocity and scattering intensity in the evolving soot clusters made it clear that soot is mainly formed in the periphery of the flame tip where the air entrainment is less and flame temperature favors soot formation.
Technical Paper

A Study on the Application of the Two–Color Method to the Measurement of Flame Temperature and Soot Concentration in Diesel Engines

1980-09-01
800970
Flame temperature and KL factor in a DI diesel engine are measured optically by the two-color method. Some differences are observed between the measure values at visible and infrared wavelengths. These differences are caused by: (1) effect of change of index α in time at infrared wavelength during combustion period; (2) effect of distributions of temperature and soot concentration along optical path; and (3) effect of reflection at the walls. The optical characteristics and some other problems on the instrumentation of the two-color method at both wavelengths are also discussed.
Technical Paper

A Two-Zone Model Analysis of Heat Release Rate in Diesel Engines

1997-10-01
972959
A thermodynamic two-zone model which assumes a stoichiornetric burned gas region and unburned air region is presented in an attempt to calculate more precise rate of heat release of diesel combustion. A comparison is made of the rate of heat release obtained by the two-zone model with that obtained by the conventional single-zone model. It shows around 10 % increase in the rate of heat release with the two-zone model. The effect of state equation of gas is also examined with the single-zone model and the use of a real gas law in stead of the perfect gas law is found to yield minor difference in the rate of heat release at a high boost operating condition.
Technical Paper

Application of Laser Doppler Anemometry to a Motored Diesel Engine

1980-09-01
800965
Some problems associated with applying LDA to the measurement of air motion in the engine’s cylinder are studied experimentally for both the forward and the back scattering technique in a motored diesel engine. The effects of the doppler broadening caused by the velocity gradient and the diameters of the scattering particles are discossed. The decaying process and the structure of the in-cylinder flow field are studied using the measurements of the main flow velocity, the turbulent intensity and macro scales and normalised power spectrum of the turbulence. A comparison measurement is also made between the forward scattering and the back scattering techniques.
Technical Paper

Combustion Enhancement of Very Lean Premixture Part in Stratified Charge Conditions

1996-10-01
962087
Local inhomogeneity of mixture concentration affects combustion characteristics in the lean burn system and also in the stratified charge combustion system. To investigate such combustion systems, the effects of inhomogeneous mixtures were examined using a carefully controlled experimental system. In this study, a constant-volume chamber, which can simulate an idealized stratified charge by using a removable partition inside the chamber, was developed. Flow and combustion characteristics were examined by indicated pressure analysis, Schlieren photography, ion probe measurements and local equivalence ratios measurements while varying the combination of initial equivalence ratios on each side of the partition. As a result, combustion characteristics of charge stratified, very lean propane-air mixture were clarified.
Technical Paper

Comprehensive Characterization of Particulate Emissions from Advanced Diesel Combustion

2007-07-23
2007-01-1945
The applicability of several popular diesel particulate matter (PM) measurement techniques to low temperature combustion is examined. The instruments' performance in measuring low levels of PM from advanced diesel combustion is evaluated. Preliminary emissions optimization of a high-speed light-duty diesel engine was performed for two conventional and two advanced low temperature combustion engine cases. A low PM (<0.2 g/kg_fuel) and NOx (<0.07 g/kg_fuel) advanced low temperature combustion (LTC) condition with high levels of exhaust gas recirculation (EGR) and early injection timing was chosen as a baseline. The three other cases were selected by varying engine load, injection timing, injection pressure, and EGR mass fraction. All engine conditions were run with ultra-low sulfur diesel fuel. An extensive characterization of PM from these engine operating conditions is presented.
Technical Paper

Development of a High Sensitivity and High Response Portable Smoke Meter

2014-04-01
2014-01-1580
The filtration efficiency of a DPF drops when it suffers a failure such as melting and cracks during regeneration. And then, on-board diagnostics (OBD) device has become needed worldwide to detect a DPF failure. In the development of an OBD soot sensor, evaluation of the sensor demands a portable instrument which can measure the soot concentration for on-board and in-field use. Some of the emission regulations require the in-field emission measurements under normal in-use operation of a vehicle. This study is intended to develop a high sensitivity and high response portable smoke meter for on-board soot measurements and a reference to OBD soot sensors under development. The smoke meter accommodates a 650 nm laser diode, and its principle is based on light extinction in high soot concentration range and backward light scattering for low soot concentration measurement.
Technical Paper

Development of a New Measurement Tool for Fuel Injection Rate in Diesel Engines

1989-02-01
890317
A new instrument for the measurement of fuel injection rate in diesel engines was developed. The instrument, whose measurement principle is based on the Zeuch's method, i.e., the constant volume method, incorporates a device for the precise calibration of the volume elasticity of the fuel. This instrument was proved experimentally to have a capability of measuring injection rate with ± 1% accuracy up to an injection pump rotating speed of 2500rpm.
X