Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

<PP/SEBS> Compounds: Sealing an Easier Future for Automotive Designers and Specifiers

2002-07-09
2002-01-1997
There is a definite trend toward the increasing use of “Glass Encapsulation Technology” in the automotive industry. In this technology a glass object such as a window is placed within a mould and an elastomer is injected around the window giving a tight sealing system. A wide variety of materials are currently used as the sealing materials in either static or semi-static encapsulated glazing systems, including a wide range of “elastomers”. New thermoplastic elastomer compounds are being developed that are characterized by their consistent properties; including high melt-fluidity, very good surface appearance, sealing properties, and resistance to weathering. Compound performance is highly dependent on formulation variables as well as the chemistries of the base materials. KRATON® SEBS polymers1 are block copolymers of styrene and ethylene/butylene.
Technical Paper

175°C-Capable Thermoplastic Elastomers for Automotive Air Management and Sealing Applications

2007-11-28
2007-01-2576
Flexibility, oil resistance, and the need for heat resistance to 150°C-plus temperatures have traditionally limited automotive design engineers to two options - thermoset rubber or heat-shielding conventional thermoplastic elastomers (TPE). Both of these options present limitations in part design, the ability to consolidate the number of components in a part of assembly, and on total cost. This paper presents a class of high-performance, flexible thermoplastic elastomers based on dynamically vulcanized polyacrylate (ACM) elastomer dispersed in a continuous matrix of polyamide (PA) thermoplastic. These materials are capable of sustained heat resistance to 150°C and short-term heat resistance to 175°C, without requiring heat shielding. Recent advancements in blow molding and functional testing of the PA//ACM TPEs for automotive air management (ducts) and underhood sealing applications will be shown.
Technical Paper

19-Color H2O Absorption Spectrometer Applied for Real-Time In-Cylinder Gas Thermometry in an HCCI Engine

2007-04-16
2007-01-0188
1 An all fiber-optic sensor has been developed to measure H2O mole fraction and gas temperature in an HCCI engine. This absorption-spectroscopy-based sensor utilizes a broad wavelength (1320 to 1380 nm) source (supercontinua generated by a microchip laser) and a series of fiber Bragg gratings (19 gratings centered on unique water absorption peaks) to track the formation and temperature of combustion water vapor. The spectral coverage of the system promises improved measurement accuracy over two-line diode-laser based systems. Meanwhile, the simplicity of the fiber Bragg grating chromatic dispersion approach significantly reduces the data reduction time and cost relative to previous supercontinuum-based sensors. The data provided by the system is expected to enhance studies of the chemical kinetics which govern HCCI ignition as well as HCCI modeling efforts.
Technical Paper

1978 to 1980 Ford On-Road Fuel Economy

1981-02-01
810383
Since 1978 Ford Motor Company has been surveying the fuel economy of employes who lease new light duty vehicles from the Company. Winter and summer survey data for the three years are analyzed and compared. Car results show a significant and steady increase in average on-road fuel economy over the three year period. The percent differential between EPA measured and actual on-road fuel economy has lessened substantially since 1978. Furthermore, the percent difference between EPA and on-road is essentially constant over the range of EPA values for each of the three years. Limited fuel economy results for 1980 trucks are also discussed.
Journal Article

1D Thermo-Fluid Dynamic Modeling of Reacting Flows inside Three-Way Catalytic Converters

2009-04-20
2009-01-1510
In this work a detailed model to simulate the transient behavior of catalytic converters is presented. The model is able to predict the unsteady and reacting flows in the exhaust ducts, by solving the system of conservation equations of mass, momentum, energy and transport of reacting chemical species. The en-gine and the intake system have not been included in the simulation, imposing the measured values of mass flow, gas temperature and chemical composition as a boundary condition at the inlet of the exhaust system. A detailed analysis of the diffusion stage triggering is proposed along with simplifications of the physics, finalized to the reduction of the calculation time. Submodels for water condensation and its following evaporation on the monolith surface have been taken into account as well as oxygen storage promoted by ceria oxides.
Technical Paper

1K and 2K Polyurethanes for Automotive Topcoats

1993-03-01
930049
The increased occurrence of environmental damage to automotive topcoats and the variety of abrasive conditions to which the coating is subjected have made increasing demands on the properties of these coatings. There is as yet, no single paint chemistry that fulfills these extreme requirements in all respects. On the other hand, the right choice of components in polyurethane can result in excellent etch resistance as well as improved scratch resistance compared to traditional melamine/acrylic systems. This paper will discuss some recent studies in the areas of two-component and one-component polyurethane chemistry, which address these rigorous quality requirements.
Technical Paper

2-Ply Windshields: Laboratory Impactor Tests of the Polyurethane Construction

1995-02-01
950048
A test program was conducted to characterize the impact response of an experimental 2-ply windshield construction with a polyurethane (PUR) plastic inner layer. Windshield impact tests were conducted using a linear impactor test facility. Principle among the findings was that the impact response of prototype PUR 2-ply windshields does not differ that significantly from that of baseline 3-ply HPR (High Penetration Resistance) windshields for the subcompact vehicle geometry tested. However, the impact responses of both PUR 2-ply and 3-ply HPR subcompact vehicle windshields were found to be highly variable. Average performance of either construction could thus be enhanced if ways could be found (and then implemented) to reduce this variability.
Technical Paper

2005 Ford GT - Vehicle Aerodynamics - Updating a Legend

2004-03-08
2004-01-1254
This paper documents the processes and methods used by the Ford GT team to meet aerodynamic targets. Methods included Computational Fluid Dynamics (CFD) analysis, wind tunnel experiments (both full-size and scale model), and on-road experiments and measurements. The goal of the team was to enhance both the high-speed stability and track performance of the GT. As a result of the development process, significant front and rear downforce was achieved while meeting the overall drag target.
Technical Paper

2006 Chevrolet Corvette C6 Z06 Aerodynamic Development

2005-04-11
2005-01-1943
This paper is intended to give a general overview of the key aerodynamic developments for the 2006 Chevrolet Corvette C6 Z06. Significant computational and wind tunnel time were used to develop the 2006 Z06 to provide it with improved high speed stability, increased cooling capability and equivalent drag compared to the 2004 Chevrolet Corvette C5 Z06.
Technical Paper

3-D LDV Measurement of In-Cylinder Air Flow in a 3.5L Four-Valve SI Engine

1995-02-01
950648
In-cylinder flows in a motored four-valve SI engine were examined by simultaneous three-component LDV measurement. The purpose of this study was to develop better physical understanding of in-cylinder flows and quantitative methods which correlate in-cylinder flows to engine performance. This study is believed to be the first simultaneous three-component LDV measurement of the air flow over a planar section of a four-valve piston-cylinder assembly. Special attention is paid to the tumble formation process, three-dimensional turbulent kinetic energy, and measurement of the tumble ratio. The influence of the induction system and the piston geometry are believed to have a significant effect on the in-cylinder flow characteristics. Using LDV measurement, the flows in two different piston top geometries were examined. One axial plane was selected to observe the effect of piston top geometries on the flow field in the combustion chamber.
Technical Paper

3-D Numerical Study of Mixing Characteristics of NH3 in Front of SCR

2006-10-16
2006-01-3444
The Urea Selective Catalytic Reduction (SCR) technology is one of the major mature exhaust aftertreatment technologies which are demonstrated to be able to lower tail pipe NOx emission by 90%. The system consists of a urea injection at upstream pipe and a downstream SCR converter. A well mixed flow (exhaust gas and NH3) in front of SCR substrate, which is usually constrained by tight design packaging, is very critical to ensure the desired performance. Current paper addresses the geometrical effects on flow mixing by using three dimensional Computational Fluid Dynamics (CFD) tool. The mixing enhancement is achieved by adding flow mixer. The shapes and locations of flow mixers, as well as the number of blades inside mixer are investigated to show the effect on fluid mixing in downstream along the flow direction. Results show great improvement of flow mixing by adding a delta wing mixer.
Journal Article

3D Auditory Displays for Parking Assistance Systems

2017-04-11
2017-01-9627
The objective of this study was to investigate if 3D auditory displays could be used to enhance parking assistance systems (PAS). Objective measurements and estimations of workload were used to assess the benefits of different 3D auditory displays. In today’s cars, PAS normally use a visual display together with simple sound signals to inform drivers of obstacles in close proximity. These systems rely heavily on the visual display, as the sound does not provide information about obstacles' location. This may cause the driver to lose focus on the surroundings and reduce situational awareness. Two user studies (during summer and winter) were conducted to compare three different systems. The baseline system corresponded to a system normally found in today’s cars. The other systems were designed with a 3D auditory display, conveying information of where obstacles were located through sound. A visual display was also available. Both normal parking and parallel parking was conducted.
Technical Paper

3D CFD Analyses of Intake Duct Geometry Impact on Tumble Motion and Turbulence Production in SI Engines

2017-10-08
2017-01-2199
In recent years, engine manufacturers have been continuously involved in the research of proper technical solutions to meet more and more stringent CO2 emission targets, defined by international regulations. Many strategies have been already developed, or are currently under study, to attain the above objective. A tendency is however emerging towards more innovative combustion concepts, able to efficiently burn lean or highly diluted mixtures. To this aim, the enhancement of turbulence intensity inside the combustion chamber has a significant importance, contributing to improve the burning rate, to increase the thermal efficiency, and to reduce the cyclic variability. It is well-known that turbulence production is mainly achieved during the intake stroke. Moreover, it is strictly affected by the intake port geometry and orientation.
Technical Paper

3D CFD Analysis of the Influence of Some Geometrical Engine Parameters on Small PFI Engine Performances - The Effects on Tumble Motion and Mean Turbulent Intensity Distribution

2012-10-23
2012-32-0096
In scooter/motorbike engines coherent and stable tumble motion generation is still considered an effective mean in order to both reduce engine emissions and promote higher levels of combustion efficiency. The scientific research also assessed that squish motion is an effective mean for speeding up the combustion in a combustion process already fast. In a previous technical paper the authors demonstrated that for an engine having a high C/D ratio the squish motion is not only not necessary but also detrimental for the stability of the tumble motion itself, because there is a strong interaction between these two motions with the consequent formation of secondary vortices, which in turn penalizes the tumble breakdown and the turbulent kinetic energy production.
Technical Paper

3D Large Scale Simulation of the High-Speed Liquid Jet Atomization

2007-04-16
2007-01-0244
In this paper three-dimensional Large Eddy Simulations (i.e., LES) by using a PLIC-VOF method have been adopted to investigate the atomization process of round liquid jets issuing from automotive multi-hole injector-like nozzles. LES method is used to compute directly the effect of the large flow structure, being the smallest one modelled. A mesh having a cell size of 4 μm was used in order to derive a statistics of the detached liquid structures, i.e. droplets and ligaments. The latter have been identified by using an algorithm coded by authors. Cavitation modeling has not been included in the present computations. Two different mean injection nozzle flow velocities of 50 m/s and 270 m/s, corresponding to two mean nozzle flow Reynolds numbers of 1600 and 8700, respectively, have been considered in the calculations as representative of laminar and turbulent nozzle flow conditions.
Technical Paper

3D Simulation of Induction Port Flow of a Four-Valve Engine Configuration

1992-02-01
920586
Steady induction port flow has been simulated in a complex configuration, which is modelled on a four-valve engine with a pent-roof chamber. The numerical solution has been obtained using a finite volume method coupled with the standard k - ε turbulence model. It is shown that the 3D flow field is characterised by large vortices with horizontal axes induced by the inlet jets, and by flow interaction between inlet jets from both valves. Special attention has been paid to flow distributions in the valve curtain areas. Velocity and turbulence energy profiles have been obtained in these areas and compared with previous hot-wire measurements and 2D calculations using Reynolds stress models as well as the k - ε model. The findings in this study are expected to enhance our understanding of complex engine induction port flows and to provide better boundary conditions for in-cylinder flow calculations
Technical Paper

41 Study of the Impact to the water Quality by Marine Engine Exhaust Emissions

2002-10-29
2002-32-1810
Starting with the laboratory study, the amount of exhaust emission compound dissolved in water was measured, and the divergence of exhaust emission compounds was reviewed. Measurements were taken for hydrocarbon (HC), especially benzene, toluene, m-Xylene, p-Xylene, and o-Xylene. It was verified that the amount of exhaust emission compounds dissolved in water has positive correlation with the volume of exhaust gas introduced into the water. The dissolved amount was smaller with the low emission engine model. Volatile Organic Compound (VOC) decreased sharply at the beginning, but the decrement got smaller after a certain period of time. Next research was performed on the actual river where PWC are being used. We looked into the possible correlation between the VOC's concentration in water and the distance to the water where a lot of PWC's are running. In addition the MTBE (Methyl Tertiary-Butyl Ether) concentration was measured.
Technical Paper

4300 F Thermocouples for Re-Entry Vehicle Applications Part II

1963-01-01
630360
This paper presents a discussion of the component evaluation and design development work performed in developing a 4300 F reentry vehicle nose cap temperature sensor. Material compatabilities, insulation resistance, and atmospheric pressure effects on bare wire calibration data are discussed in some detail. The final design is outlined and the application problems discussed. The probe utilizes: a sintered iridium high temperature sheath (4300 F) and platinum 20% rhodium as the low temperature sheath (3000 F); beryllia as insulation -- hard fired at 4300 F and compacted powder at 3000 F; tungsten versus tungsten 26% rhenium as the thermocouple pair.
Technical Paper

4300°F Thermocouples for Re-entry Vehicle Applications – Part I

1963-01-01
630359
This paper discusses work performed in research, design, and development of sensors for measurement of local dynamic surface temperatures on re-entry vehicles. Included are discussions of the basic requirements and related system design factors, the transducer concepts and sensor assembly configurations considered, and the materials investigations and engineering tests conducted. Design requirements are presented for the twin-lead thermocouple probe temperature sensor chosen as the most feasible concept for early implementation. The most promising thermocouple materials and fabrication processes are defined and the additional precision testing and development requirements for final design are outlined. Information not previously reported in available literature includes preliminary data from tests up to4300°F showing (1) excellent oxidation resistance of Iridium, and (2) oxidation protection of thermocouple elements in “gas tight” sheaths of thoria and zirconia.
Technical Paper

48 Development of Exhaust Valve Seat Insert Material for High Performance Engines

2002-10-29
2002-32-1817
Engines are assigned big subjects such as low emission and low fuel consumption as well as higher output (higher efficiency) in the latest trend of environmental protection. In order to meet these requirements, Air/Fuel ratio of recent high performance engines is being arranged leaner than that of conventional engines. As a result exhaust valve seat inserts used in these engines have problems of their wear resistance because of high exhaust gas temperature. By analyzing wear mechanism under the lean burn conditions, authors developed material for exhaust valve seat inserts which show superior wear resistance under high operating temperature. For the purpose to enhance heat resistance, authors added alloy steel powder for matrix powder and used hard particles which have good diffusion with matrix. The developed material does not include Ni and Co powders for cost saving and has superior machinability.
X