Refine Your Search

Topic

Author

Affiliation

Search Results

Event

2024-04-23
Technical Paper

1-D Modeling and Room Temperature Experimental Measurements of the Exhaust System Backpressure: Limits and Advantages in the Prediction of Backpressure

2008-04-14
2008-01-0676
It is well known that backpressure is one of the important parameters to be minimised during the exhaust system development. Unfortunately, during the first phases of an engineering process of a new engine, engine prototypes are not available yet. Due to this the exhaust system backpressure is generally evaluated using simulation software, and/or measuring the backpressure by a flow rig test at room temperature. Goal of this paper is to compare exhaust backpressure results obtained respectively: i) at the room temperature flow rig; ii) at the engine dyno bench; iii) by simulation with one of the most common 1D fluidodynamics simulation tool (Gt-Power). A correlation of the three different techniques is presented.
Technical Paper

10 Steps to ISO26262-compliant Model-based Software Components

2015-04-14
2015-01-0160
Model-based software development is a well-established software development process and recognized by ISO26262 [1] as allowing for highly consistent and efficient development. Nevertheless, enhancing a model-based development process in such a way that it is compliant with the ISO26262 safety standard is a challenging task. To achieve ISO26262 compliance, the development team of a safety-related software project faces a multitude of additional requirements for the development process without a corresponding increase of the project budget to fulfill them. The fact that many of the requirements of ISO26262 are defined in a very generic way such that an interpretation is required further hampers their implementation. We propose a 10-step strategy to achieve an ISO26262 compliant model-based software development process. This strategy relates ISO26262 requirements with state-of-the art methods and approaches currently used for model-based software development.
Technical Paper

12 Present situation of Automated Guided Vehicle

2002-10-29
2002-32-1781
Many automated guided golf cars using the electromagnetic guide technology are used in Japan to obtain more convenient and safer golf play. Now this technology is beginning to be used outside of the golf course as an on-demand people mover system. This paper presents an example of the engineering system of automated guided golf cars along for the 2 principles of automated guided vehicle. The first principle is “the steering control system including the automatic sensitivity adjustment function”, and the other principle is “the vehicle speed control system”.
Technical Paper

14 Degree-of-Freedom Vehicle Model for Roll Dynamics Study

2006-04-03
2006-01-1277
A vehicle model is an important factor in the development of vehicle control systems. Various vehicle models having different complexities, assumptions, and limitations have been developed and applied to many different vehicle control systems. A 14 DOF vehicle model that includes a roll center as well as non-linear effects due to vehicle roll and pitch angles and unsprung mass inertias, is developed. From this model, the limitations and validity of lower order models which employ different assumptions for simplification of dynamic equations are investigated by analyzing their effect on vehicle roll response through simulation. The possible limitation of the 14 DOF model compared to an actual vehicle is also discussed.
Technical Paper

2 Stroke Fuel Injected Outboard Motor with Oxygen Sensor Feedback Control System

1997-10-27
978491
This paper describes new 2 stroke fuel injected spark ignition outboard motor equipped with unique oxygen sensor feed back control system to assure constantly optimized air/fuel ratio. First, the general concept and the engineering target of commercial model are explained, and then the design and arrangement of oxygen sensor feedback fuel injection control system are described. Common automotive oxygen sensor is utilized in this system, and it is devised to overcome the problems inherent in 2-stroke engines. This paper also describes the controlled combustion system that enhances consistent and stable performance, and improves fuel efficiency. Applying these technologies, 40% less fuel consumption in cruise range was demonstrated by the comparative test with conventional fuel injected 2-stroke model.
Technical Paper

2-Color Thermometry Experiments and High-Speed Imaging of Multi-Mode Diesel Engine Combustion

2005-10-24
2005-01-3842
Although in-cylinder optical diagnostics have provided significant understanding of conventional diesel combustion, most alternative combustion strategies have not yet been explored to the same extent. In an effort to build the knowledge base for alternative low-temperature combustion strategies, this paper presents a comparison of three alternative low-temperature combustion strategies to two high-temperature conventional diesel combustion conditions. The baseline conditions, representative of conventional high-temperature diesel combustion, have either a short or a long ignition delay. The other three conditions are representative of some alternative combustion strategies, employing significant charge-gas dilution along with either early or late fuel injection, or a combination of both (double-injection).
Technical Paper

2-D Imaging of Fuel Vapor Concentration in a Diesel Spray via Exciplex-Based Fluorescence Technique

1993-10-01
932652
To measure the fuel vapor concentration in an unsteady evaporating spray injected into nitrogen atmosphere, the exciplex-forming method, which produces spectrally separated fluorescence from the liquid and vapor phase, was applied in this study. Two experiments were conducted to investigate the qualitative and quantitative applicability of the technique in a high temperature and high pressure atmosphere during the fuel injection period. One is to examine the thermal decomposition of TMPD dopant at a high temperature and a high pressure nitrogen atmosphere during a short period of time. The other is to calibrate the relationship between fluorescence intensity and vapor concentration of TMPD at different vapor temperatures. And then, the qualitative measurement of fuel vapor concentration distributions in diesel sprays was made by applying the technique.
Technical Paper

2-D Imaging of Soot Formation Process in a Transient Spray Flame by Laser-induced Fluorescence and Incandescence Techniques

2002-10-21
2002-01-2669
In order to investigate the soot formation process in a diesel spray flame, simultaneous imaging of soot precursor and soot particles in a transient spray flame achieved in a rapid compression machine was conducted by laser-induced fluorescence (LIF) and by laser-induced incandescence (LII) techniques. The 3rd harmonic (355nm) and the fundamental (1064nm) laser pulses from an Nd:YAG laser, between which a delay of 44ns was imposed by 13.3m of optical path difference, were used to excite LIF from soot precursor and LII from soot particles in the spray flame. The LIF and the LII were separately imaged by two image-intensified CCD cameras with identical detection wavelength of 400nm and bandwidth of 80nm. The LIF from soot precursor was mainly located in the central region of the spray flame between 40 and 55mm (270 to 370 times nozzle orifice diameter d0) from the nozzle orifice. The LII from soot particles was observed to surround the soot precursor LIF region and to extend downstream.
Technical Paper

2-D Soot Visualization in Unsteady Spray Flame by means of Laser Sheet Scattering Technique

1991-02-01
910223
The two-dimensional distribution of a soot cloud in an unsteady spray flame in a rapid compression machine(RCM) was visualized using the laser sheet scattering technique. A 40 mm x 50 mm cross section on the flame axis was illuminated by a thin laser sheet from a single pulsed Nd:YAG laser(wavelength 532 nm). Scattered light from soot particles was taken by a CCD camera via a high speed gated image intensifier. The temporal variation of the scattered light images were presented with the injection pressure as a parameter. The results showed that scattered light was intense near the periphery of the flame tip and that the scattered light becomes weaker significantly and disappears fast after the end of injection as injection pressure is increased. This technique was also applied to the visualization of the two-dimensional distribution of liquid droplets in the non-evaporating spray to correlate it with the soot concentration distribution.
Technical Paper

2-D Visualization of Liquid Fuel injection in an Internal Combustion Engine

1987-11-01
872074
A sheet of laser light from a frequency-doubled Nd-YAG laser (λ = 532 nm) approximately 150 μm thick is shone through the cylinder of a single cylinder internal combustion engine. The light scattered by the fuel spray is collected through a quartz window in the cylinder and is imaged on a 100 × 100 diode array camera. The signal from the diode array is then sent to a microcomputer for background subtraction and image enhancement. The laser pulse is synchronized with the crank shaft of the engine so that a picture of the spray distribution within the engine at different times during injection and the penetration and development of the spray may be observed. The extent of the spray at different positions within the chamber is determined by varying the position and angle of the laser sheet with respect to the piston and the injector.
Technical Paper

2-D Visualization of a Hollow-Cone Spray in a Cup-in-Head, Ported, I.C. Engine

1989-02-01
890315
Two dimensional visualization of a pulsating, hollow-cone spray was performed in a motored, ported, high swirl, cup-in-head I.C. engine, using exciplex-forming dopants in the fuel, which produced spectrally separated fluorescence from the liquid and vapor phases. Illumination was by a laser sheet approximately 200 µm thick from a frequency tripled Nd:YAG laser, and image acquisition was by a 100 × 100 pixel diode array camera interfaced to a personal computer. Liquid and vapor phase fuel distributions are reported for engine speeds of 800 rpm and 1600 rpm, over a crankangle range spanning the injection event and subsequent evaporation and mixing. The beginning of injection was at 33° BTDC at 800 rpm and 47° BTDC at 1600 rpm. At 800 rpm, the spray angle is narrower than the 60° poppet angle, as expected from previous observations in a near-quiescent spray chamber.
Technical Paper

2-D Visualization of liquid and Vapor Fuel in an I.C. Engine

1988-02-01
880521
A sheet of laser light from a frequency tripled Nd-YAG laser approximately 200μm thick is shone through the combustion chamber of a single cylinder, direct injection internal combustion engine. The injected decane contains exciplex—forming dopants which produce spectrally separated fluorescence from the liquid and vapor phases. The fluorescence signal is collected through a quartz window in the cylinder head and is imaged onto a diode array camera. The camera is interfaced to a microcomputer for data acquisition and processing. The laser and camera are synchronized with the crankshaft of the engine so that 2—D images of the liquid and vapor phase fuel distributions can be obtained at different times during the engine cycle. Results are presented at 600, 1200 and 1800 rpm, and from the beginning to just after the end of injection. The liquid fuel traverses the cylinder in a straight line in the form of a narrow cone, but does not reach the far wall in the plane of the laser sheet.
Journal Article

2-Drive Motor Control Unit for Electric Power Steering

2017-03-28
2017-01-1485
The electric power steering (EPS) is increasing its number since there are many advantages compared to hydraulic power steering. The EPS saves fuel and eliminates hydraulic fluid. Also, it is more suitable to the cooperation control with the other vehicle components. The EPS is now expanding to the heavier vehicle with the advance in the power electronics. In order to meet customer's needs, such as down-sizing, lower failure rate and lower price, we have developed the new motor control unit (MCU) for the EPS. The motor and the electric control unit (ECU) were integrated for the better installation. We adopted new technologies of redundant 2-drive design for more safe EPS. “2-drive Motor Control technology” which consists of dual winding, two torque sensors and two inverter drive units. In our developed MCU, even if there is a failure in one of the drive unit, the assistance of the EPS can be maintained with the other drive unit.
Technical Paper

2006 Chevrolet Corvette Z06 Aluminum Spaceframe Manufacturing Technology

2005-01-11
2005-01-0470
In October 1999, General Motors contracted Dana Corporation to manufacture an all-aluminum spaceframe for the 2006 Chevrolet Corvette Z06. Corvette introduced its first ever all-aluminum frame (see Figure 1) to the world at the 2005 North American International Auto Show (NAIAS) in Detroit, Michigan. The creation of this spaceframe resulted in a significant mass reduction and was a key enabler for the program to achieve the vehicle level performance results required for a Z06 in an ever-growing market. Dana Corporation leveraged ALCOA's (Aluminum Company of America) proven design capabilities while incorporating new MIG welding, laser welding, Self-Pierce Riveting (SPR), and full spaceframe machining to join General Motors (GM) Metal Fabrication Division's (MFD) hydroformed rails to produce the Corvette Z06's yearly requirement of 7000 units. This paper describes the technologies utilized throughout the assembly line and their effect on the end product.
Book

2013 and 2014 Passenger Car Yearbook

2013-11-25
This set consists of two books, 2013 Passenger Car Yearbook, and 2014 Passenger Car Yearbook. Both include articles that were written by the award-winning editors of Automotive Engineering International. Both books detail the key engineering developments in the passenger vehicle industry of that year. Each new car model is profiled in its own chapter with one or more articles.
Book

2018 Ultimate GD&T Pocket Guide 2nd Ed

2020-11-23
The 2018 Ultimate GD&T Pocket Guide explains the most common rules, symbols, and concepts used in geometric dimensioning and tolerancing. This one-of-a-kind reference guide includes more than 100 detailed examples to illustrate concepts. Numerous charts for quick reference provide explanations of each GD&T symbol, modifier, and more. This valuable on-the-job resource clarifies how to interpret standard-compliant technical drawings that use ASME Y14.5-2018.

2022 Thermal Management Systems Symposium

2024-04-23
Thermal Management Systems Symposium industry discusses latest regulatory impacts, applications to reduce engine emissions, conserve energy, reduce noise, improve the cabin environment, increase overall vehicle performance passenger, commercial vehicle industry.
X