Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 22184
Article

2015-12-03
Article

2017-10-22
Technical Paper

"Electro Gyro-Cator" New Inertial Navigation System for Use in Automobiles

1983-02-01
830659
The Electro Gyro-Cator allows a driver to monitor his progress, plot and follow courses to a destination, select alternate routes, and drive more safely on unfamiliar roads or at night. Employing a sealed helium gas-rate gyro, the Electro Gyro-Cator offers visual display (CRT display) of a car's present location, direction and route, with overlay maps for fast, simple route selection and monitoring. The primary elements of the unit include trip and direction sensors, a 16-Bit central processing unit, a CRT display screen and a collection of transparent overlay maps fitted to the screen.
Technical Paper

"Quattro"-Drive for Every Day Driving

1984-01-01
845070
An essential feature of the Audi Quattro permanent four-wheel drive system is in the inter-axle differential located on the hollow output shaft in the gearbox: the drive is taken from this differential forward to the front differential through the inside of the hollow shaft, and rearward to a propellor shaft driving the rear differential. The major advantages in everyday driving include improved traction and a reduced tendency toward throttle induced changes of attitude. The greater traction allows not only better progress in difficult road conditions; it also gives better acceleration in difficult traffic situations, such as when joining a busy main road. The more easily predictable handling response to throttle changes means that Quattro vehicles have better tracking stability. Altogether, the active safety and "roadability" are considerably improved.
Technical Paper

(Nano) Particles from 2-S Scooters: SOF / INSOF; Improvements of Aftertreatment; Toxicity

2007-04-16
2007-01-1089
Limited and non-regulated emissions of scooters were analysed during several annual research programs of the Swiss Federal Office of Environment (BAFU) *). Small scooters, which are very much used in the congested centers of several cities, are a remarkable source of air pollution. Therefore every effort to reduce the emissions is an important contribution to improve the air quality in urban centers. In the present work detailed investigations of particle emissions of different 2-stroke scooters with direct injection and with carburettor were performed. The nanoparticulate emissions were measured by means of SMPS, (CPC) and NanoMet. Also the particle mass emission (PM) was measured with the same method as for Diesel engines. Extensive analyses of PM-residuum for SOF/INSOF, PAH and toxicity equivalence (TEQ), were carried out in an international project network. Particle mass emission (PM) of 2-S Scooters consists mostly of SOF.
Journal Article

(R)evolution of E/E Architectures

2015-04-14
2015-01-0196
This paper presents an overview of the evolution & revolution of automotive E/E architectures and how we at Bosch, envision the technology in the future. It provides information on the bottlenecks for current E/E architectures and drivers for their evolution. Functionalities such as automated driving, connectivity and cyber-security have gained increasing importance over the past few years. The importance of these functionalities will continue to grow as these cutting-edge technologies mature and market acceptance increases. Implementation of these functionalities in mainstream vehicles will demand a paradigm shift in E/E architectures with respect to in-vehicle communication networks, power networks, connectivity, safety and security. This paper expounds on these points at a system level.
Collection

0-D and 1-D Modeling and Numerics, 2017

2017-03-28
Papers in the session cover zero-dimensional, one-dimensional, and quasi-dimensional models for simulation of SI and CI engines with respect to: engine breathing, boosting, and acoustics; SI combustion and emissions; CI combustion and emissions; fundamentals of engine thermodynamics; numerical modeling of gas dynamics; thermal management; mechanical and lubrication systems; system level models for controls; and system level models for vehicle fuel economy and emissions predictions.
Collection

0-D and 1-D Modeling and Numerics, 2018

2018-04-03
Papers in the session cover zero-dimensional, one-dimensional, and quasi-dimensional models for simulation of SI and CI engines with respect to: engine breathing, boosting, and acoustics; SI combustion and emissions; CI combustion and emissions; fundamentals of engine thermodynamics; numerical modeling of gas dynamics; thermal management; mechanical and lubrication systems; system level models for controls; and system level models for vehicle fuel economy and emissions predictions.
Technical Paper

0D-1D Coupling for an Integrated Fuel Economy Control Strategy for a Hybrid Electric Bus

2011-09-11
2011-24-0083
Hybrid electric vehicles (HEVs) are worldwide recognized as one of the best and most immediate opportunities to solve the problems of fuel consumption, pollutant emissions and fossil fuels depletion, thanks to the high reliability of engines and the high efficiencies of motors. Moreover, as transport policy is becoming day by day stricter all over the world, moving people or goods efficiently and cheaply is the goal that all the main automobile manufacturers are trying to reach. In this context, the municipalities are performing their own action plans for public transport and the efforts in realizing high efficiency hybrid electric buses, could be supported by the local policies. For these reasons, the authors intend to propose an efficient control strategy for a hybrid electric bus, with a series architecture for the power-train.
Technical Paper

1-D Modeling of Transient Engine Operations Using Data Generated by a CFD Code

2008-04-14
2008-01-0357
Transient engine operations are modeled and simulated with a 1-D code (GT Power) using heat release and emission data computed by a 3-D CFD code (Kiva3). During each iteration step of a transient engine simulation, the 1-D code utilizes the 3-D data to interpolate the values for heat release and emissions. The 3-D CFD computations were performed for the compression and combustion stroke of strategically chosen engine operating points considering engine speed, torque and excess air. The 3-D inlet conditions were obtained from the 1-D code, which utilized 3-D heat release data from the previous 1-D unsteady computations. In most cases, only two different sets of 3-D input data are needed to interpolate the transient phase between two engine operating points. This keeps the computation time at a reasonable level. The results are demonstrated on the load response of a generator which is driven by a medium-speed diesel engine.
Technical Paper

1.8L Sierra-Mondeo Turbo-Diesel Valvetrain Friction Reduction Using a Solid Film Lubricant

1994-10-01
941986
A 1.8L turbocharged diesel engine valvetrain friction was investigated, and the effectiveness of using a solid film lubricant (SFL) coating in reducing friction was determined throughout the operable speed range. This valvetrain design features direct acting mechanical bucket valve lifters. Camshaft journal bearing surfaces and all camshaft rubbing surfaces except lobe tips were coated. The direct acting bucket shims were etched with a cross hatch pattern to a depth sufficient to sustain a SFL film coating on the shim rubbing surfaces subjected to high surface loads. The SFL coated valvetrain torque was evaluated and compared with uncoated baseline torque. Coating the cam bearing journal surfaces alone with II-25D SFL reduced valvetrain friction losses 8 to 17% for 250 to 2000 rpm cam speed range (i.e. 500 - 4000 rpm engine speed). When bucket tappet and shims were also coated with the SFL, further significant reductions in coated valvetrain friction were observed.
Technical Paper

1.9-Liter Four-Cylinder HCCI Engine Operation with Exhaust Gas Recirculation

2001-05-07
2001-01-1894
We present the effect of EGR, at a set fuel flow rate and intake temperature, on the operating parameters of timing of combustion, duration of combustion, power output, thermal efficiency, and NOx emission; which is remarkably low. We find that addition of EGR at constant inlet temperature and constant fuel flow rate has little effect on HCCI parameter of start of combustion (SOC). However, burn duration is highly dependent on the amount of EGR inducted. The experimental setup at UC Berkeley uses a 1.9-liter 4-cylinder diesel engine with a compression ratio of 18.8:1 (offered on a 1995 VW Passat TDI). The engine was converted to run in HCCI mode by addition of an 18kW air pre-heater installed in the intake system. Pressure traces were obtained using four water-cooled quartz pressure transducers, which replaced the Diesel fuel injectors. Gaseous fuel (propane or butane) flowed steadily into the intake manifold.
Technical Paper

100 HP / 200 Nm Diesel Motorcycle with 6 Speed Automated Manual Transmission

2004-09-27
2004-32-0069
Diesel engines, especially CR (Common Rail) DI (Direct Injection) TCI (Turbo Charged Inter-cooled), share a wide acceptance in the passenger car market due to the enormous torque and flexibility at low engine speed. A pre - condition for the use of a diesel engine in a motorcycle is that the disadvantages like combustion noise and visible smoke are reduced or eliminated. Moreover the fuel economy and performance characteristics of a diesel engine are dedicated to be used in a touring or large displacement motorcycle. The AVL engine concept is the first high performance diesel engine to be specially designed for motorcycles in terms of packaging and styling. To compensate for the limited engine speed range a gearbox with a wide ratio spread is required. This leads to a manual transmission with at least 6 gears or an automatic transmission. For the AVL concept an AMT (Automated Manual Transmission) was selected.
Journal Article

1000-Hour Durability Evaluation of a Prototype 2007 Diesel Engine with Aftertreatment Using B20 Biodiesel Fuel

2009-11-02
2009-01-2803
A prototype 2007 ISL Cummins diesel engine equipped with a diesel oxidation catalyst (DOC), diesel particle filter (DPF), variable geometry turbocharger (VGT), and cooled exhaust gas recirculation (EGR) was tested at Southwest Research Institute (SwRI) under a high-load accelerated durability cycle for 1000 hours with B20 soy-based biodiesel blends and ultra-low sulfur diesel (ULSD) fuel to determine the impact of B20 on engine durability, performance, emissions, and fuel consumption. At the completion of the 1000-hour test, a thorough engine teardown evaluation of the overhead, power transfer, cylinder, cooling, lube, air handling, gaskets, aftertreatment, and fuel system parts was performed. The engine operated successfully with no biodiesel-related failures. Results indicate that engine performance was essentially the same when tested at 125 and 1000 hours of accumulated durability operation.
Technical Paper

12-Volt Vacuum Fluorescent Display Drive Circuitry for Electronically Tuned Radios

1986-03-01
860126
The trend towards battery voltage vacuum fluorescent displays continues the technological advances in design and construction of VFD's, as they are applied to the automobile environment. With the ever increasing use of electronic displays for electronically tuned radios (ETR's), compact disc (CD) players, and other entertainment systems, advances in battery voltage displays and their associated drive circuitry have become a necessity. With the inherent advantages of low voltage operation and high information density, VFD's will continue to dominate the automobile audio markets. This paper will discuss battery voltage displays, the basic circuitry necessary to operate a vacuum fluorescent display, and comment on the “off the shelf” controller and driver circuitry available.
Technical Paper

14/42V - Electrical Power Supply Systems Consequences for Electrical Interconnections and Switches

2000-08-21
2000-01-3055
This paper provides an overview about the consequences of a 14/42 V - Electrical Power Supply System for the Electrical Interconnection and Switching Technology. It presents design guidelines and solutions for connector systems including advanced applications like fuse and relay boxes and gives an overview of those existing connectors already suited for 42 V and even higher voltages. The problem of arcing due to the increased voltage is discussed for the case that mating and unmating under load has to be taken into consideration. Arcing also has a tremendous impact on the design of 42 V proof relays. Therefore, some basic results be presented along with proposals how these problems can be overcome by appropriate designs. Another part of the paper looks at the electrical power supply system itself. Here interconnection techniques for new battery systems are discussed. Finally, the chances for new technologies are highlighted.
Technical Paper

175°C-Capable Thermoplastic Elastomers for Automotive Air Management and Sealing Applications

2007-11-28
2007-01-2576
Flexibility, oil resistance, and the need for heat resistance to 150°C-plus temperatures have traditionally limited automotive design engineers to two options - thermoset rubber or heat-shielding conventional thermoplastic elastomers (TPE). Both of these options present limitations in part design, the ability to consolidate the number of components in a part of assembly, and on total cost. This paper presents a class of high-performance, flexible thermoplastic elastomers based on dynamically vulcanized polyacrylate (ACM) elastomer dispersed in a continuous matrix of polyamide (PA) thermoplastic. These materials are capable of sustained heat resistance to 150°C and short-term heat resistance to 175°C, without requiring heat shielding. Recent advancements in blow molding and functional testing of the PA//ACM TPEs for automotive air management (ducts) and underhood sealing applications will be shown.
Technical Paper

18 Gasoline CAI and Diesel HCCI: the Way towards Zero Emission with Major Engine and Fuel Technology Challenges

2002-10-29
2002-32-1787
Engines and fuels for transport as well as off-road applications are facing a double challenge: bring local pollution to the level requested by the most stringent city air quality standard reduce CO2 emission in order to minimize the global warming risk. These goals stimulate new developments both of conventional and alternative engines and fuels technologies. New combustion processes known as Controlled Auto-Ignition (CAI™) for gasoline engine and Homogeneous Charge Compression Ignition (HCCI) for Diesel engine are the subject of extensive research world wide and particularly at IFP for various applications such as passenger cars, heavy-duty trucks and buses as well as small engines. Because of the thermo-chemistry of the charge, the thermal NOx formation and the soot production are in principle much lower than in flames typical of conventional engines.
Technical Paper

180MPa Piezo Common Rail System

2006-04-03
2006-01-0274
The challenge for the diesel engines today is to reduce harmful emissions, such as particulate matter (PM) and Nitrogen oxides (NOx), and enhance the fuel efficiency and power, which are its main advantages. To meet this challenge, DENSO has developed an advanced common rail system (CRS) that uses piezo actuated fuel injectors capable of delivering up to five injection events per combustion cycle at 180MPa, currently the world's highest commercially available diesel fuel injection pressure. The DENSO piezo injector incorporates an internally developed piezoelectric element that energizes quicker than its solenoid counterpart, thereby reducing the transition time for the start and end of the fuel injection event. The piezoelectric element and unique passage structure of the DENSO injector combine to provide a highly reliable and responsive fuel injection event.
Technical Paper

1937 Road Knock Tests

1938-01-01
380145
THIS paper deals with the road-test portion of the extensive efforts made during 1937 by the Cooperative Fuel Research Committee to get as precise a correlation as possible between the laboratory knock ratings of automobile fuels and their corresponding ratings in cars on the road. It is anticipated that the comprehensive results of car tests reported here, taken together with the results of the laboratory rating program reported in the companion paper, will serve as the basis of the continuing studies aimed at developing the best possible correlation between road and laboratory knock ratings. Work similar to that reported here has been conducted concurrently in England by the Institution of Petroleum Technologists, using British cars and fuels. An exchange of information between the British and American groups working on this problem is being made.
X