Refine Your Search

Topic

Search Results

Technical Paper

A Variable-Structure Fuzzy Controller (VSFC) for Clutch Actuator

1999-09-14
1999-01-2808
For the fast tracing control problem of clutch actuator with non-linear characteristics, multi-factor and multi-target, a kind of VSFC is proposed in this paper which has a PD forward unit to improve its fast tracing capability. According to the characteristic status of system, the proper control strategy is applied in the VSFC.
Technical Paper

CO2 Neutral Heavy-Duty Engine Concept with RCCI Combustion Using Seaweed-based Fuels

2020-04-14
2020-01-0808
This paper focusses on the application of bioalcohols (ethanol and butanol) derived from seaweed in Heavy-Duty (HD) Compression Ignition (CI) combustion engines. Seaweed-based fuels do not claim land and are not in competition with the food chain. Currently, the application of high octane bioalcohols is limited to Spark Ignition (SI) engines. The Reactivity Controlled Compression Ignition (RCCI) combustion concept allows the use of these low carbon fuels in CI engines which have higher efficiencies associated with them than SI engines. This contributes to the reduction of tailpipe CO2 emissions as required by (future) legislation and reducing fuel consumption, i.e. Total-Cost-of-Ownership (TCO). Furthermore, it opens the HD transport market for these low carbon bioalcohol fuels from a novel sustainable biomass source. In this paper, both the production of seaweed-based fuels and the application of these fuels in CI engines is discussed.
Technical Paper

Combustion and Emission Characteristics of a Heavy Duty Engine Fueled with Two Ternary Blends of N-Heptane/Iso-Octane and Toluene or Benzaldehyde

2016-04-05
2016-01-0998
In this work, the influences of aromatics on combustion and emission characteristics from a heavy-duty diesel engine under various loads and exhaust gas recirculation (EGR) conditions are investigated. Tests were performed on a modified single-cylinder, constant-speed and direct-injection diesel engine. An engine exhaust particle sizer (EEPS) was used in the experiments to measure the size distribution of engine-exhaust particle emissions in the range from 5.6 to 560 nm. Two ternary blends of n-heptane, iso-octane with either toluene or benzaldehyde denoted as TRF and CRF, were tested, diesel was also tested as a reference. Test results showed that TRF has the longest ignition delay, thus providing the largest premixed fraction which is beneficial to reduce soot. However, as the load increases, higher incylinder pressure and temperature make all test fuels burn easily, leading to shorter ignition delays and more diffusion combustion.
Journal Article

Development and Application of a Virtual NOx Sensor for Robust Heavy Duty Diesel Engine Emission Control

2017-03-28
2017-01-0951
To meet future emission targets, it becomes increasingly important to optimize the synergy between engine and aftertreatment system. By using an integrated control approach minimal fluid (fuel and DEF) consumption is targeted within the constraints of emission legislation during real-world operation. In such concept, the on-line availability of engine-out NOx emission is crucial. Here, the use of a Virtual NOx sensor can be of great added-value. Virtual sensing enables more direct and robust emission control allowing, for example, engine-out NOx determination during conditions in which the hardware sensor is not available, such as cold start conditions. Furthermore, with use of the virtual sensor, the engine control strategy can be directly based on NOx emission data, resulting in reduced response time and improved transient emission control. This paper presents the development and on-line implementation of a Virtual NOx sensor, using in-cylinder pressure as main input.
Technical Paper

Development, Validation and ECM Embedment of a Physics-Based SCR on Filter Model

2016-09-27
2016-01-8075
SCR on Filter (SCRoF) is an efficient and compact NOX and PM reduction technology already used in series production for light-duty applications. The technology is now finding its way into the medium duty and heavy duty market. One of the key challenges for successful application is the robustness to real world variations. The solution to this challenge can be found by using model-based control algorithms, utilizing state estimation by physics-based catalyst models. This paper focuses on the development, validation and real time implementation of a physics-based control oriented SCRoF model. An overview of the developed model will be presented, together with a brief description of the model parameter identification and validation process using engine test bench measurement data. The model parameters are identified following a streamlined approach, focusing on decoupling the effects of deNOx and soot phenomena.
Journal Article

Direct Injection of Diesel-Butane Blends in a Heavy Duty Engine

2011-12-06
2011-01-2400
Increasing fuel prices keep bringing attention to alternative, cheaper fuels. Liquefied Petroleum Gas (LPG) has been well known for decades as an alternative fuel for spark ignition (SI) passenger cars. More recently, aftermarket LPG systems were also introduced to Heavy Duty transport vehicles. These (port fuel) systems either vaporize the liquid fuel and then mix it with intake air, or inject fuel into the engine's intake ports. While this concept offers significant fuel cost reductions, for aftermarket certification and large-scale OEM use some concerns are present. Unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions are known to be high because of premixed charge getting trapped into crevices and possibly being blown through during valve-overlap. Apart from the higher emission levels, this also limits fuel efficiency and therefore cost savings.
Technical Paper

Effects of Butanol Isomers on the Combustion and Emission Characteristics of a Heavy-Duty Engine in RCCI Mode

2020-04-14
2020-01-0307
Butanol is an attractive alternative fuel by virtue of its renewable source and low sooting tendency. In this paper, three butanol isomers (n-butanol, isobutanol, and tert-butanol) were induced via port injection respectively and n-heptane was directly injected into the cylinder to investigate reactivity controlled compression ignition in a heavy-duty diesel engine. This work evaluates the potential of applying butanol as low reactivity fuel and the effects of reactivity gradient on combustion and emission characteristics. The experiments were performed from low load to medium-high load. Due to the different reactivities among the butanol isomers, the exhaust gas recirculation rate and the direct injection strategy were varied for a specific butanol isomer and testing load. Particularly, isobutanol/n-heptane can be operated with single direct injection and no exhaust gas recirculation up to medium load due to the high octane rating.
Technical Paper

Effects of Different Injection Strategies and EGR on Partially Premixed Combustion

2018-09-10
2018-01-1798
Premixed Charge Compression Ignition concepts are promising to reduce NOx and soot simultaneously and keeping a high thermal efficiency. Partially premixed combustion is a single fuel variant of this new combustion concepts applying a fuel with a low cetane number to achieve the necessary long ignition delay. In this study, multiple injection strategies are studied in the partially premixed combustion approach to reach stable combustion and ultra-low NOx and soot emission at 15.5 bar gross indicated mean effective pressure. Three different injection strategies (single injection, pilot-main injection, main-post injection) are experimentally investigated on a heavy duty compression ignition engine. A fuel blend (70 vol% n-butanol and 30 vol% n-heptane) was tested. The effects of different pilot and post-injection timing, as well as Exhaust-gas Recirculation rate on different injection strategies investigated.
Technical Paper

Emission Performance of Lignin-Derived Cyclic Oxygenates in a Heavy-Duty Diesel Engine

2012-04-16
2012-01-1056
In earlier research, a new class of bio-fuels, so-called cyclic oxygenates, was reported to have a favorable impact on the soot-NOx trade-off experience in diesel engines. In this paper, the soot-NOx trade-off is compared for two types of cyclic oxygenates. 2-phenyl ethanol has an aromatic and cyclohexane ethanol a saturated or aliphatic ring structure. Accordingly, the research is focused on the effect of aromaticity on the aforementioned emissions trade-off. This research is relevant because, starting from lignin, a biomass component with a complex poly-aromatic structure, the production of 2-phenyl ethanol requires less hydrogen and can therefore be produced at lower cost than is the case for cyclohexane ethanol.
Technical Paper

Experimental Demonstration of RCCI in Heavy-Duty Engines using Diesel and Natural Gas

2014-04-01
2014-01-1318
Premixed combustion concepts like PCCI and RCCI have attracted much attention, since these concepts offer possibilities to reduce engine out emissions to a low level, while still achieving good efficiency. Most RCCI studies use a combination of a high-cetane fuel like diesel, and gasoline as low-cetane fuel. Limited results have been published using natural gas as low-cetane fuel; especially full scale engine results. This study presents results from an experimental study of diesel-CNG RCCI operation on a 6 cylinder, 8 l heavy duty engine with cooled EGR. This standard Tier4f diesel engine was equipped with a gas injection system, which used single point injection and mixed the gaseous fuel with air upstream of the intake manifold. For this engine configuration, RCCI operating limits have been explored. In the 1200-1800 rpm range, RCCI operation with Euro-VI engine out NOx and soot emissions was achieved between 2 and 9 bar BMEP without EGR.
Journal Article

Experimental and Numerical Analyses of Liquid and Spray Penetration under Heavy-Duty Diesel Engine Conditions

2016-04-05
2016-01-0861
The modeling of fuel sprays under well-characterized conditions relevant for heavy-duty Diesel engine applications, allows for detailed analyses of individual phenomena aimed at improving emission formation and fuel consumption. However, the complexity of a reacting fuel spray under heavy-duty conditions currently prohibits direct simulation. Using a systematic approach, we extrapolate available spray models to the desired conditions without inclusion of chemical reactions. For validation, experimental techniques are utilized to characterize inert sprays of n-dodecane in a high-pressure, high-temperature (900 K) constant volume vessel with full optical access. The liquid fuel spray is studied using high-speed diffused back-illumination for conditions with different densities (22.8 and 40 kg/m3) and injection pressures (150, 80 and 160 MPa), using a 0.205-mm orifice diameter nozzle.
Technical Paper

Heavy-Duty Diesel Engine Spray Combustion Processes: Experiments and Numerical Simulations

2018-09-10
2018-01-1689
A contemporary approach for improving and developing the understanding of heavy-duty Diesel engine combustion processes is to use a concerted effort between experiments at well-characterized boundary conditions and detailed, high-fidelity models. In this paper, combustion processes of n-dodecane fuel sprays under heavy-duty Diesel engine conditions are investigated using this approach. Reacting fuel sprays are studied in a constant-volume pre-burn vessel at an ambient temperature of 900 K with three reference cases having specific combinations of injection pressure, ambient density and ambient oxygen concentration (80, 150 & 160 MPa - 22.8 & 40 kg/m3-15 & 20.5% O2). In addition to a free jet, two different walls were placed inside the combustion vessel to study flame-wall interaction.
Technical Paper

LDA Measurements of Steady and Unsteady Flow Through the Induction System of a Heavy Duty Diesel Engine

1990-09-01
901576
LDA technique was used to investigate valve exit flow and in-cylinder flow generated by a directed intake port of a heavy duty Diesel engine under steady and unsteady conditions. The results obtained under both steady and unsteady show the flow patterns is very sensitive to the valve lift with this type of intake port. At small valve lift, flow profile around the valve periphery is relatively uniform, the corresponding in-cylinder flow is characteristic of double vortex. With valve lift increasing, the separating region appears near the valve seat in part of the valve periphery, therefore the flow pattern begins to depend on the position around the valve periphery. As a result, the valve exit flow is almost along the elongation of intake port at the maximum lift, the corresponding in-cylinder flow behaves as a solid body of rotation. The motion of valve seems to have little effects on the valve exit flow pattern.
Technical Paper

Model-Based Approach for Calibration and Validation by Simulation of Emission Control Solutions for Next Generation Off-Road Vehicles

2011-04-12
2011-01-0309
The next generation off-road vehicles will see additional exhaust gas aftertreatment systems, ranging from DOC-SCR only to full DOC-DPF-SCR-AMOX systems. This will increase system complexity and development effort significantly. Emission requirements and the high number of vehicle configurations within the off-road industry will require a new process for development and validation. The introduced model-based approach using physical models of aftertreatment can reduce development effort and cost, improve performance robustness and help to identify performance issues early in the development process. A method to investigate and optimize a large matrix of variations by simulation is introduced. This can lead to a significant reduction in the number of required calibrations and can assist in the development of design specifications for the aftertreatment system. A case study for SCR calibration successfully demonstrates the potential of model-based development.
Technical Paper

Numerical Study on the Design of a Passive Pre-Chamber for a Heavy-Duty Hydrogen Combustion Engine

2024-04-09
2024-01-2112
Lean-burn hydrogen internal combustion engines are a good option for future transportation solutions since they do not emit carbon-dioxide and unburned hydro-carbons, and the emissions of nitric-oxides (NOx) can be kept low. However, under lean-burn conditions the combustion duration increases, and the combustion stability decreases, leading to a reduced thermal efficiency. Turbulent jet ignition (TJI) can be used to extend the lean-burn limit, while decreasing the combustion duration and improving combustion stability. The objective of this paper is to investigate the feasibility of a passive pre-chamber TJI system on a heavy-duty hydrogen engine under lean-burn conditions using CFD modelling. The studied concept is mono-fuel, port-fuel injected, and spark ignited in the pre-chamber. The overall design of the pre-chamber is discussed and the effect of design parameters on the engine performance are studied.
Technical Paper

Performance and Emission Studies in a Heavy-Duty Diesel Engine Fueled with an N-Butanol and N-Heptane Blend

2019-04-02
2019-01-0575
N-butanol, as a biomass-based renewable fuel, has many superior fuel properties. It has a higher energy content and cetane number than its alcohol competitors, methanol and ethanol. Previous studies have proved that n-butanol has the capability to achieve lower emissions without sacrifice on thermal efficiency when blended with diesel. However, most studies on n-butanol are limited to low blending ratios, which restricts the improvement of emissions. In this paper, 80% by volume of n-butanol was blended with 20% by volume of n-heptane (namely BH80). The influences of various engine parameters (combustion phasing, EGR ratio, injection timing and intake pressure, respectively) on its combustion and emission characteristics are tested at different loads. The results showed that when BH80 uses more than 40% EGR, the emitted soot and nitrogen oxides (NOx) emissions are below the EURO VI legislation.
Journal Article

Ramped Versus Square Injection Rate Experiments in a Heavy-Duty Diesel Engine

2020-04-14
2020-01-0300
CO2 regulations on heavy-duty transport are introduced in essentially all markets within the next decade, in most cases in several phases of increasing stringency. To cope with these mandates, developers of engines and related equipment are aiming to break new ground in the fields of combustion, fuel and hardware technologies. In this work, a novel diesel fuel injector, Delphi’s DFI7, is utilized to experimentally investigate and compare the performance of ramped injection rates versus traditional square fueling profiles. The aim is specifically to shift the efficiency and NOx tradeoff to a more favorable position. The design of experiments methodology is used in the tests, along with statistical techniques to analyze the data. Results show that ramped and square rates - after optimization of fueling parameters - produce comparable gross indicated efficiencies.
Journal Article

Robust Emission Management Strategy to Meet Real-World Emission Requirements for HD Diesel Engines

2015-04-14
2015-01-0998
Heavy-duty diesel engines are used in different application areas, like long-haul, city distribution, dump truck and building and construction industry. For these wide variety of areas, the engine performance needs to comply with the real-world legislation limits and should simultaneously have a low fuel consumption and good drivability. Meeting these requirements takes substantial development and calibration effort, where an optimal fuel consumption for each application is not always met in practice. TNO's Integrated Emission Management (IEM) strategy, is able to deal with these variations in operating conditions, while meeting legislation limits and obtaining on-line cost optimization. Based on the actual state of the engine and aftertreatment, optimal air-path setpoints are computed, which balances EGR and SCR usage.
Journal Article

Robust, Cost-Optimal and Compliant Engine and Aftertreatment Operation using Air-path Control and Tailpipe Emission Feedback

2016-04-05
2016-01-0961
Heavy-duty diesel engines are used in a wide range of applications. For varying operating environments, the engine and aftertreatment system must comply with the real-world emission legislation limits. Simultaneously, minimal fuel consumption and good drivability are crucial for economic competitiveness and usability. Meeting these requirements takes substantial development and calibration effort, and complying with regulations results in a trade-off between emissions and fuel consumption. TNO's Integrated Emission Management (IEM) strategy finds online, the cost-optimal point in this trade-off and is able to deal with variations in operating conditions, while complying with legislation limits. Based on the actual state of the engine and aftertreatment system, an optimal engine operating point is computed using a model-based optimal-control algorithm.
Technical Paper

Single Bank NOx Adsorber for Heavy Duty Diesel Engines

2003-05-19
2003-01-1885
In a NOx adsorber programme the feasibility for applying this technology to heavy duty diesel engines was investigated. After modelling and simulations for realising best λ < 1 engine conditions a platform was build which was used to obtain good NOx adsorber regeneration settings in a number of steady state key points without violating pre-defined limits. With these results the NOx adsorber was evaluated and tested. Besides establishing NOx conversions and BSFC penalties the programme also looked at the adsorber capabilities of dealing with sulphur poisoning and how well the adsorber could be de-sulphurised. This programme showed clearly the stronger and weaker points in the NOx adsorber technology for heavy duty application. From NOx conversion - BSFC penalty trade off curves it became clear that at lower loads high conversions (> 90%) with small fuel penalties (< 2.5%) were possible. However at high load the conversions were reduced (< 70%) and the fuel penalties increased (> 6%).
X