Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

Brake Pedal Feeling Comfort Analysis for Trucks with Pneumatic Brake System

2019-09-15
2019-01-2140
The brake pedal is the brake system component that the driver fundamentally has contact and through its action wait the response of the whole system. Each OEM defines during vehicle conceptualization the behavior of brake pedal that characterizes the pedal feel that in general reflects not only the characteristic from that vehicle but also from the entire brand. Technically, the term known as Pedal Feel means the relation between the force applied on the pedal, the pedal travel and the deceleration achieved by the vehicle. Such relation curves are also analyzed in conjunction with objective analysis sheets where the vehicle brake behavior is analyzed in test track considering different deceleration conditions, force and pedal travel. On technical literature, it is possible to find some data and studies considering the hydraulic brakes behavior.
Technical Paper

Brake System Regulations and Standards Review and Comparison Focused on Europe, NA and SA Markets

2017-09-17
2017-01-2534
Considering that the most part of commercial vehicles are equipped with air brakes it is very important assure specific technical requirements for air brake system and its components. In addition, the effects of brake system failure are more critical for commercial vehicles which require more attention on their requirements details. Historically, the development of air brakes technology started on North America and Europe and consequently two strong and distinct resolutions were structured: FMVSS 121 and ECE R.13, respectively. For passenger cars were developed the ECER.13H to harmonize North American and European resolutions. However, for commercial vehicles regional applications, culture and implementation time must be considered. These commercial vehicles peculiarities must be understood and their specific requirements harmonized to attend the global marketing growth.
Technical Paper

Brakes Standards Interface Analysis Considering Brazilian, European and North American Regulations Focusing on Technologies Introduction

2015-05-13
2015-36-0027
It is very important and unquestionable that we need to have a clear technical requirement for Air Brake Systems and its components, since it is one of most important regarding safety. Looking to heavy commercial vehicles and possible air brake system failures, everything becomes clearly to pay total attention for these normative and regulatory requirements. Historically, the development of Brakes technology has started on EUA and Europe and consequently two strong and distinct requirements were structured: FMVSS 121 and ECE-R13. From decades people are trying to harmonize these requirements and for passenger cars, the evolution was faster. However, for commercial vehicles there are more peculiarities considering regional applications and some of them cultural and implementation time. As globally market is growing so fast as well new markets around the world, become fundamental the clearly understanding of these similarities, variants, peculiarities and correlated requirements.
Technical Paper

CAE Approach for Light Truck Frame Durability Evaluation Due to Payload Increase

2004-11-16
2004-01-3411
The growing competition of the automotive market makes more and more necessary the reduction of development time and consequently, the increase of the capacity to quickly respond to the launching of the competitors. One of the most costly phases on the vehicle development process is the field durability test, both in function of the number of prototypes employed and the time needed to its execution. More and more diffused, the fatigue life prediction methods have played an important part in the durability analysis via CAE. Nevertheless, in order they can be reliable and really being able to reduce the development time and cost, they need to be provided with load cases that can accurately represent the field durability tests. This work presents a CAE approach used for light trucks in order to get a reasonable understanding of component durability behavior due to payload increase. In general, road load data is not available for a new payload condition.
Technical Paper

Commercial vehicle pedal feeling comfort ranges definition

2020-01-13
2019-36-0016
The brake pedal is the brake system component that the driver fundamentally has contact and through its action wait the response of the whole system. Each OEM defines during vehicle conceptualization the behavior of brake pedal that characterizes the pedal feel that in general reflects not only the characteristic from that vehicle but also from the entire brand. Technically, the term known as Pedal Feel means the relation between the force applied on the pedal, the pedal travel and the deceleration achieved by the vehicle. Such relation curves are also analyzed in conjunction with objective analysis sheets where the vehicle brake behavior is analyzed in test track considering different deceleration conditions, force and pedal travel. On technical literature, it is possible to find some data and studies considering the hydraulic brakes behavior.
Technical Paper

Comparative Analysis between American and European Requirements for Electronic Stability Control (ESC) Focusing on Commercial Vehicles

2019-09-15
2019-01-2141
Analysis of road accidents has shown that an important portion of fatal crashes involving Commercial Vehicles are caused by rollovers. ESC systems in Commercial Vehicles can reduce rollovers, severe understeer or oversteer conditions and minimize occurrences of jackknifing events. Several studies have estimated that this positive effect of ESC on road safety is substantial. In Europe, Electronic Stability Control (ESC) is expected to prevent by far the most fatalities and injuries: about 3,000 fatalities (-14%), and about 50,000 injuries (-6%) per year. In Europe, Electronic Stability Control Systems is mandatory for all vehicles (since Nov. 1st, 2011 for new types of vehicle and Nov. 1st, 2014 for all new vehicles), including Commercial Vehicles, Buses, Trucks and Trailers.
Technical Paper

DOE's Effort to Reduce Truck Aerodynamic Drag Through Joint Experiments and Computations

2005-11-01
2005-01-3511
At 70 miles per hour, overcoming aerodynamic drag represents about 65% of the total energy expenditure for a typical heavy truck vehicle. The goal of this US Department of Energy supported consortium is to establish a clear understanding of the drag producing flow phenomena. This is being accomplished through joint experiments and computations, leading to the intelligent design of drag reducing devices. This paper will describe our objective and approach, provide an overview of our efforts and accomplishments related to drag reduction devices, and offer a brief discussion of our future direction.
Technical Paper

Detailed Experimental Results of Drag-Reduction Concepts on a Generic Tractor-Trailer

2005-11-01
2005-01-3525
The 1/8-scale Generic Conventional Model was studied experimentally in two wind tunnels at NASA Ames Research Center. The investigation was conducted at a Mach number of 0.15 over a Reynolds number range from 1 to 6 million. The experimental measurements included total and component forces and moments, surface pressures, and 3-D particle image velocimetry. Two configurations (trailer base flaps and skirts) were compared to a baseline representative of a modern tractor aero package. Details of each configuration provide insight into the complex flow field and the resulting drag reduction was found to be sensitive to Reynolds number.
Technical Paper

Evolution of the New Ford Aerostar Impact Extruded Aluminum Wheel

1984-11-01
841694
Ford's continued effort to improve fuel economy in automotive applications has emphasized the need for lightweight components that retain all the toughness associated with Ford truck vehicle characteristics. The application of an impact extrusion process to wheel design and manufacture, for Ford Aerostar, provides strength, performance and style more efficiently than other traditional processes. It results in a valuable 33% weight saving over comparable HSLA steel wheels, and provides the customer with uncompromised value. The Ford Aerostar Impact Extruded Aluminum Wheel was designed to be of one-piece construction, manufactured from a less than 1″ thick aluminum wafer-shaped blank. The process permits manufacture in half the steps of a conventional stamped steel wheel, and eliminates extensive machining required with forged or cast aluminum wheels.
Technical Paper

Magnetic Tape and Servo-Hydraulics Applied to Truck Frame Testing

1964-01-01
640119
This paper discusses the possible impact of the FM tape recorder and servo-hydraulic actuators on the testing of automotive structures. The use of tape recorders and automatic data reduction systems will permit more accurate definition of service conditions and properly “set-the-stage” for laboratory testing. Servo-hydraulic strokers should encourage better laboratory simulation because of their great flexibility. Test set-up time is reduced, fixtures can be simplified and load control is more precise. Simultaneous multiple inputs can be controlled as to amplitude and phase relationships.
Technical Paper

Methodology for Determination and Optimization of Bolted Joints

2017-11-07
2017-36-0294
In order to optimize the development of bolted joints used to components attachments in the Sidemember of commercial vehicles, the joints development has become relevant to better definition of the fasteners size, eliminating overweight and avoiding under or super-sized. This paper presents a development sequential approach of bolted joints applied on commercial vehicles ensuring the correct specifications usage of the fasteners and the joint to keep their clamp force. The evaluations were conducted based on theoretical and practical aspects applied on products and in the definition of all elements contained in a joint. The calculation methodology was developed based on standardized bolts and forces generated through the reactions of the components required for each vehicle family.
Technical Paper

Methodology of Automatic Slack Brake Adjuster Definition Considering Foundation Brake System Characteristics

2017-05-24
2017-36-0004
S-cam brakes concept are largely used by commercial vehicles around the world due to its low cost, easy maintenance and robustness. An important component of s-cam brakes is the slack adjuster, that is responsible for amplify brake chamber forces and assure correct lining and drum clearance. Therefore usually slack adjuster mechanism characteristics are defined only by empiric method considering trial and error tentative. This paper aims to demonstrate a methodology created to develop new air s-cam brakes slack adjuster definition taken in consideration its interface with other brake components. During this study was identified design specification for each component and its influence on adjustment process. It was verified the intrinsic characteristics of slack adjuster mechanism and developed a calculation tool to predict its actuation on the brake. The interface of slack adjuster with other foundation brake components and drum compliance were also studied.
Technical Paper

One Piece Stamped I-Beam Axle

1980-11-01
801425
Recent accomplishments, made possible by advances in manufacturing and material technology, have led to the development of a one-piece stamped I-Beam axle with ball joints as a replacemet to the forged axle with king pin design. The new stamped I-Beam axle brings with it a number of improvements to Ford's Twin I-Beam suspension system. This paper describes the objectives, improvements, evolution of the design, testing, and the manufacturing process for this latest suspension system improvement on Ford light trucks.
X