Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Debris Signature Analysis: A Method for Assessing the Detrimental Effect of Specific Debris Contaminated Lubrication Environments

1998-04-08
981478
Various methods for evaluating the effectiveness of debris resistant bearings have been proposed for development. Once evaluation methods are well established to select bearings, the user is faced with assessing severity and detrimental effects of a specific application's lubricant contamination on bearing performance. Many analysis tools have been suggested for determining this impact, including particle analysis for size distribution, type of material and contamination level. A novel approach for determining severity of damage has been investigated which attempts to integrate these typical tools with actual damage to functional surfaces. It seeks to provide a practical approach and is appropriately labeled Debris Signature Analysis. Results of actual assessments will be discussed and the assessment method described.
Technical Paper

Development of Portable Self Contained Phase Shifting Digital Shearography for Composite Material Testing

2005-04-11
2005-01-0590
The use of composite materials in the automotive industry has become increasingly widespread. With this increase in use, techniques for non-destructive testing (NDT) have become more and more important. Various optical NDT inspective methods such as holography, moiré techniques, and shearography have been used for material testing. Among these methods, shearography appears to be most practical. Shearography has a simple optical setup due to its “self-referencing” system, and it is relatively insensitive against rigid-body motions. Measurements of displacement derivatives, and thus strain directly, rather than the displacement itself is achieved through this method. Therefore shearography detects defects in objects by correlating anomalies of strain which are usually easier than correlating the anomalies of the displacement itself, as in holography. To date shearography has shown potential as a NDT tool for identifying defects in small structures.
Journal Article

Fuel Efficiency Improvements in Heavy Truck Wheel Systems through Advanced Bearing Design and Technology

2014-09-30
2014-01-2330
The base design of commercial vehicle wheel end systems has changed very little over the past 50 years. Current bearings for R-drive and trailer wheel end systems were designed between the 1920's and the 1960's and designs have essentially remained the same. Over the same period of time, considerable gains have been made in bearing design, manufacturing capabilities and materials science. These gains allow for the opportunity to significantly increase bearing load capacity and improve efficiency. Government emissions regulations and the need for fuel efficiency improvements in truck fleets are driving the opportunity for redesigned wheel end systems. The EPA and NHTSA standard requires up to 23% reduction in emissions and fuel consumption by 2017 relative to the 2010 baseline for heavy-duty tractor combinations.
Technical Paper

Improving the Performance of Rolling Element Bearings with Nanocomposite Tribological Coatings

2006-10-31
2006-01-3555
This study summarizes the development, characterization, and application of nanocomposite tribological coatings on rolling element bearings. Nanocomposite coatings consisting of nanocrystalline metal carbides embedded in amorphous hydrocarbon or carbon matrices (MC/aC:H or MC/aC) have been used to increase the fatigue life under boundary layer lubrication, provide debris tolerance, eliminate false brinelling, increase the operational speed, decrease the friction, and provide oil-out protection to rolling element bearings. MC/aC:H coatings are applied by magnetron sputtering at substrate temperature less than 180 °C, have small friction coefficients, high fracture strength, and can have hardness and modulus values twice and half that of carburized steel, respectively.
Technical Paper

Performance Evaluation of a Potential New Engineered Surface for Enhanced Concentrated Tribological Contacts

1998-04-08
981475
The aspects of real engineering surfaces are discussed with regard to their three-dimensional nature. A review of potential uses of surface finish measurement methods is discussed for characterization of functional surfaces. Using an optical-based system and a set of specific measurement procedures, two functional surfaces with different roughness were analyzed to illustrate a typical surface topography evaluation. A simple sliding test was then utilized to show that a special finish produced by a proprietary finishing process can provide improved performance, as measured by wear differences, frictional properties and operating temperature of the system. A special surface treatment was then evaluated in conjunction with the special finish in order to enhance its functional load support. Simple sliding test results indicates a potential new engineered surface for improving tribological contact performance.
Technical Paper

Recent Advances in the Technology of Toughening Grain-Refined, High-Strength Steels

1996-08-01
961749
Aluminum nitride and microalloy carbonitrides have been identified as microstructural features that degrade the ductile fracture resistance of tempered martensitic microstructures. A thermal/thermomechanical process has been developed to optimize the toughness of high-strength steels containing any species of grain-refining precipitate that is soluble in austenite, and the process is particularly effective at improving the impact toughness of aluminum-killed EAF steels. The process affects the mode of unstable fracture in tempered martensitic microstructures, such that at constant strength and austenite grain size, substantial improvements are realized in both longitudinal and transverse toughness over relatively broad ranges of sulfur content and tempering temperature.
Technical Paper

Repair as an Option to Extend Bearing Life and Performance

2007-10-30
2007-01-4234
Repair and remanufacture has become an accepted method to extend bearing useful life in many applications, including positions within off-highway construction and mining vehicles. However, it has not been an easy task for equipment owners to become confident in the use of repaired bearings, nor has it been an easy task for engineers to select the positions best suited for repair, as robust analytical methods to predict performance are not available. This has lead to many field test campaigns of repaired bearings on different bearing positions until the equipment owners gain enough confidence to make it part of their normal operating procedures. This paper aims to reduce the test and validation cycle that occurs with the use of repaired and remanufactured bearings by developing analytical methods to predict bearing performance. Life prediction algorithms are presented covering the different levels of repair available.
X