Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

A Comparative Study between Abrasion Techniques to Improve the Adhesion of Rubber and Metal Bond for Commercial Vehicle Applications

2021-09-22
2021-26-0253
Engine mounts are an integral part of the vehicle that helps in reducing the vibrations generated from the engine. Engine mounts require a simple yet complicated amalgamation of two very different materials, steel and rubber. Proper adhesion between the two is required to prevent any part failure. Therefore, it becomes important that a comprehensive study is done to understand the mating phenomenon of both. A good linking between rubber and metal substrate is governed by surface pretreatment. Various methodologies such as mechanical and chemical are adopted for the same. This paper aims to present a comparative study as to which surface pretreatment has an edge over other techniques in terms of separation force required to break the bonding between the two parts. The study also presents a cost comparison between the techniques so that the best possible technique can be put to use in the commercial vehicle industry.
Technical Paper

A Comprehensive Study on DOC Selection for Euro 6 Compliant Heavy Commercial Vehicles

2021-09-22
2021-26-0216
Euro 6 emission norms are getting implemented in India from April 2020 and it is being viewed as one of the greatest challenges ever faced by the Indian automotive industry. In order to achieve such stringent emission norms along with top performance for vehicle, a good strategy should be incorporated to control system out NOx emissions and soot regeneration. Extruded Vanadium catalyst is deployed for this passive regeneration system with DOC (Diesel Oxidation Catalyst), DPF (Diesel Particulate Filter) and SCR (Selective Catalyst Reduction), where the amount of catalyst loading in DOC plays an apex role in deciding conversion efficiency of SCR and passive regeneration capabilities. This study mainly focuses on the impact of catalyst loading of DOC over SCR efficiency. NO2 to NOx ratio should be close to 0.5 for optimum conversion efficiency of SCR. Catalyst loading in DOC decides the amount of NO2 coming upstream to SCR.
Technical Paper

A Comprehensive Study on Euro 6 Turbocharger Selections and Its Deterioration with Closed Crank-Case Ventilation in Heavy Commercial Vehicles

2019-09-09
2019-24-0061
Euro 6 emission norms are getting implemented in India from April 2020 and it is being viewed as one of the greatest challenges ever faced by the Indian automotive industry. In order to achieve such stringent emission norms a good strategy will be to optimize the engine out emission through in cylinder emission control techniques and a right sized after treatment system has to be used for this optimized engine. There exist several factors and trade-off between these should be established for in cylinder optimization of emissions. Since the turbocharger plays an apex role in controlling both the performance and engine out emissions of a CI engine, turbocharger selection is a crucial step in the development of new generation of Euro 6 engines in India. Such engines are equipped with additional actuators such as Intake Throttle Valve and Exhaust Throttle Valve and combination of these flap operations with turbocharger output plays a prominent role in controlling performance and emission.
Technical Paper

Air Quality Improvement in Air Conditioner Bus Saloon Through Carbon Activated Filters for Heavy Duty Commercial Vehicles

2021-09-22
2021-26-0312
The air purifier industry has seen a growth in terms of demand and sales lately. All credit goes to massive Industrialization in developing countries such as India. The most harmful of the pollutants are PM 2.5 articulates and NOx Emissions. This leads to the new trend of customers become health and comfort conscious and willing to pay more for better and improved transportation. To satisfy these demands, COEM’s are developing more numbers of Air conditioning buses. Although the OEM’s are meeting this demand of quantity, the quality of air from air conditioner is still suffer. One of the main reasons for this poor air quality is because of the ineffectiveness of conventional air conditioner air filters to control particulate materials i.e. PM2.5, biological pollutants i.e. microbes, bacteria, viruses, and gaseous pollutants i.e. CO, CO2, SO2, NOX, O3 & VOCs in air. As per various researches, health problems associated with bus occupant compartment air quality appear more frequently.
Technical Paper

Comfort Improvement in Air Conditioned Buses through the Homogenous Air Flow along the Hatrack by Using Different Types of Baffle Plates

2019-01-09
2019-26-0367
India being a developing nation, there is significant improvement of road infrastructure across the country as well as the spending power and earnings of the common man. This leads to the new trend of customers willing to pay for a more comfortable travel through AC buses. To satisfy these demands, OEM’s are forced develop and manufacture huge numbers of AC buses. Although the OEM’s are meeting this demand of quantity, the quality aspect of the buses, i.e., climate comfort, is still subpar. One of the main reasons for this sub-quality comfort is the non homogenous distribution of air flow along the bus. This non homogeneity leads to the centre of the bus having very high air flow and thus overcooling conditions, while the front and rear of the bus receive very little air flow and thus receive under-cooling conditions. To solve this concern of non homogeneity, we incorporated a new design in the hatrack, through the implementation of baffles and deflector in the hatrack.
Technical Paper

Comparative Static Simulation Study of Aluminum Cylinder Head for Commercial Vehicles using Simulations Tools

2016-10-17
2016-01-2349
To compete with the current market trends there is always a need to arrive at a cost effective and light weight designs. For commercial vehicles, an attempt is made to decrease weight of the current design without compromising its strength & stiffness, considering/bearing all the worst road/engine load cases and severe environmental conditions. The topic was chosen because of interest in higher payloads, lower weight, and higher efficiency. Automotive cylinder head must be lighter in weight, to meet increasingly demanding customer requirements. The design approach for cylinder head has made it difficult to achieve this target. A designer might make some judgment as to where ribs are required to provide stiffness, but this is based on engineering experience and Finite Element Analysis (FEA) of the stand-alone head.
Technical Paper

Design, Development and Validation of New Engine Head Cover with Advanced Sealing System by using Simulation Tools

2016-09-27
2016-01-8062
The existing head cover is having external oil and blow by separation unit, which is not only costlier but also complex and leads to increase in overall height of engine which was difficult to integrate in new variants of vehicles. A new head cover has been designed with internal baffle type oil and blow by separation system to ensure efficient separation and proper packaging of the system in new variants. The new system has been finalized after 26 DOE’s of different wire mesh sizes and different baffle plate size and positions. The final system has two bowl shaped separation unit with wire mesh, two cup type oil separation passages and one baffle plate for separating blow by. The system works on condensation and gravity method. The blow by is guided through a well-defined passage integrated in aluminum cylinder head cover itself. The passage angle is maintained to ensure minimum oil flow with blow by.
Technical Paper

Evaluation of Different Methodologies of Soot Mass Estimation for Optimum Regeneration Interval of Diesel Particulate Filter (DPF)

2021-09-22
2021-26-0208
Diesel engines have always been popular for their low end torque and lugging abilities. With their higher thermal efficiencies through technical advancements, diesel engines are preferred powertrains in mass transportation of goods as well as people [14] [15]. A diesel engine always banks on excess air, which is subjected to higher compression ratios so as to achieve temperatures, enough to facilitate auto-ignition of diesel. With the advent of turbocharging and intercooling, the air availability is further enhanced, ensuring better combustion efficiency, lesser HC, CO and particulate matter (PM) emissions together with improved fuel efficiencies [2] [15]. Higher air availability also has its own shortcomings in the form of higher NOx (Nitrogen oxides) emissions. With stringent emission norms in place, reduction of NOx as well as PM, without sacrificing performance and fuel economy, is of utmost importance.
Technical Paper

Experimental Investigation on the Effect of Pilot and Post Injection on Engine Performance and Emissions

2018-07-09
2018-28-0015
Diesel engines are facing stringent norms and future survival with its lower availability is one of the biggest concerns for OEMs of heavy duty commercial vehicles. This is leading to uplifting of new, latent and innovative techniques to achieve these norms with best possible BSFC to reduce overall diesel consumption. The prime objective of this study is to identify and explore the latent strength of pre and post injection on engine performance, emissions and oil dilution due to soot. The post injection strategy has the potential to reduce soot with almost same NOx and fuel consumption depending on the delay of post injection and its quantity. It aids to increase the engine out temperatures for assistance of after-treatment devices, thus meeting higher temperature requirements for NOx and PM conversion for stringent norms of BSVI.
Technical Paper

Integration of Clutch Housing and Transmission Housing in Light-Duty Trucks for Powertrain Downsizing using Simulation Tools and Experimentally Validated

2021-09-22
2021-26-0376
Downsizing and Light weighting is the latest trend in the automotive industry to achieve more fuel efficient, compact and cost effective design of vehicles. Powertrain components compromise of more than 45% of the total vehicle weight. Automakers are putting significant efforts to reduce the weight of power train components. Integrated design of aluminum Engine Head and Intake manifold has been successfully implemented. Now currently we have identified the gear box housings for downsizing in light duty trucks i.e. Existing light duty trucks Cast Iron transmission. This design has been successfully modified with integrated clutch housing and transmission housing, using lightweight aluminum as the new material, using simulation tools. This lead to weight savings of up to 30% and cost savings of 20-25% as compared to existing cast iron designs. Using an integrated design reduces the assembly cost, makes the design more compact and gives better weight balance.
Technical Paper

Numerical Simulation to Assess Implementation of Variable Valve Timing and Lift Technique on a BSVI LMD Diesel Engine for FE Improvement

2021-09-22
2021-26-0421
In order to stand apart from the competition, there is an ever growing demand in Indian commercial vehicle segments to reach higher fuel economy while achieving the emission goals set by the BS-VI norms. With emissions standard set by BS-VI, novel techniques to improve fuel efficiency have to be considered that have least impact with respect to NOx and soot emissions. The optimization of exhaust and intake valve lifts with respect to engine speed, technology commonly known as Variable Valve Lift and Timing (VVT/VVL), has been implemented in many passenger vehicles propelled by gasoline engine. The aim of this work is do initial assessment of utilizing the VVL method on a LMD commercial vehicle diesel engine. A 3.8 litre BS-VI turbocharged EGR engine is used for this study. Valve lift and timing optimization for better fuel efficiency at rated power engine speed is carried out by using one-dimensional thermodynamic simulation software AVL BOOST.
Technical Paper

Performance Analysis of Engine down Speeding in Emission & Fuel Economy

2017-07-10
2017-28-1921
Engine down speeding is rapidly picking up momentum in many segment of world market. Numerous engine down speeding packages from OEM have been tailored to take advantage of the increased efficiencies associated with engine down speeding. Running engine at lower rpm has numerous advantages. The most obvious of these is reduced fuel consumption, since the engine can spend more time running within its optimum efficiency range. By down speeding, the engine is made to run at low speeds and with high torques. For the same power, the engine is operated at higher specific load- Brake Mean Effective pressure (BMEP) which results in higher efficiency and reduced fuel consumption-Brake Specific Fuel Consumption (BSFC). The reasons for increased fuel efficiency are reduced engine friction due to low piston speeds, reduced relative heat transfer and increased thermodynamic efficiency.
Technical Paper

Self-Operated Solar Side Marker for Commercial Vehicles

2024-04-09
2024-01-2463
In response to Federal Motor Vehicle Safety Standard 108, Side Marker lamps were equipped in both passenger and commercial vehicles. Side marker lights are designed to provide clear visibility and vehicle identification from side way to other drivers/passersby vehicles traveling in perpendicular directions. But in case of harness failure/any malfunctioning/improper maintenance post damages etc., the side marker lamp does not illuminate when it is critically required. This causes serious accidents or loss of human beings as well. Convention side markers are powered by vehicle battery; a solar side-marker operates independently using a photometric switch that activates the light at sunset using stored solar energy. This device mainly works on natural light intensity when it lowers than specific value, the solar energy stored inside device will automatically ignite the side markers, irrespective of manual human intervention to switch it on.
Technical Paper

Soot Formation in EGR & Non EGR with SCR After Treatment in Light Duty Truck Application

2017-07-10
2017-28-1945
During the last few decades, concerns have grown on the negative effects that diesel particulate matter has on health. Because of this, particulate emissions were subjected to restrictions and various emission-reduction technologies were developed. It is ironic that some of these technologies led to reductions in the legislated total particulate mass while neglecting the number of particles. Focusing on the mass is not necessarily correct, because it might well be that not the mass but the number of particles and the characteristics of them (size, composition) have a higher impact on health. During the diesel engine combustion process, soot particles are produced which is very harmful for the atmosphere. Particulate matter is composed of much organic and inorganic composition which was analyzed after the optimization of SCR and EGR engine out.
Technical Paper

Tail Pipe Emission Study of an Aged Exhaust after Treatment System for 3.8 Litre Diesel Engine

2021-09-22
2021-26-0215
With implementation of stringent BSVI emission norms and regulations like OBD-II on vehicle, it is essential to define the life of exhaust after treatment along with the vehicle. Diesel after treatment generally consists of DOC, DPF and SCR. Lubricating oil contains phosphorus and zinc which adversely affect the DOC. Unburned hydrocarbons (UNHBC) and SOF in tail pipe get accumulated in the DPF. This requires regeneration process where in, high temperatures in exhaust after treatment (EATS) burn the adsorbed Sulphur or phosphorus, thereby improving the conversion efficiencies. Repeated regenerations lead to ash accumulation in DPF and this reduces its capability for soot accumulation. Sulphur in the exhaust impacts SCR through NOx conversion. The present study analyzes the effect of (1) Chemical aging (2) Thermal aging on 3.77 liter diesel engine after treatment. A test cycle was prepared to run the durability for EATS.
Technical Paper

Technology Challenges and Strategies for BS-VI in Commercial Vehicles

2017-07-10
2017-28-1937
Air Pollution is a major concern in our country due to which Indian Government has taken a decision to move from BS-IV to BS-VI which is nearly 90% reduction in NOx and 50% in particulate matter along with addition of particulate number regulation for BS-VI in comparison to BS-IV norms in very short span of time. Vehicle manufacturers are also having the challenge to produce low cost and fuel efficient product with BS-VI solution in order to meet tightening emission regulations and increasing needs of lower fuel consumption. Detailed study is done with different approaches to meet BS-VI emission which is elaborately explained in different aspect of engine design and after treatment parameter with its pros and cons. After Treatment selection plays an important role in engine development to meet stringent emission legislations and customer demands. Strategies for BS-VI were described with the advantage and drawbacks for after treatment selection.
Technical Paper

The Study and Deep Insights of Port Injection Turbocharged CNG Engine Development for Trucks and Buses

2021-09-22
2021-26-0214
The intensifying demand of cleaner fuelled vehicles considering current norms of BSIV and upcoming stringent norms of BSVI with low cost solutions has promoted the development of CNG and dual fuel vehicles. CNG vehicle is anticipated to discover its extensive use for environment fortification and effective deployment of energy capitals. Thus, CNG vehicles can be pretty effective in averting environment deterioration. CNG has low carbon to hydrogen ratio, this leads to very low CO2 emissions compared to gasoline and diesel vehicles. CNG engines have the potential of low NOx and particulate emissions. Natural gas vehicle development has been directed on the way to current use of direct injection and port injection with S.I. engines. Generally for low cost development, all OEMs prefer optimization of existing engines. Similarly for this project, a diesel engine was converted to S.I. engine for development of low emission CNG engine.
X