Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparative Study of Hydraulic Hybrid Systems for Class 6 Trucks

2013-04-08
2013-01-1472
In order to reduce fuel consumption, companies have been looking at hybridizing vehicles. So far, two main hybridization options have been considered: electric and hydraulic hybrids. Because of light duty vehicle operating conditions and the high energy density of batteries, electric hybrids are being widely used for cars. However, companies are still evaluating both hybridization options for medium and heavy duty vehicles. Trucks generally demand very large regenerative power and frequent stop-and-go. In that situation, hydraulic systems could offer an advantage over electric drive systems because the hydraulic motor and accumulator can handle high power with small volume capacity. This study compares the fuel displacement of class 6 trucks using a hydraulic system compared to conventional and hybrid electric vehicles. The paper will describe the component technology and sizes of each powertrain as well as their overall vehicle level control strategies.
Technical Paper

Analysis of Vehicle Performance at the FutureTruck 2002 Competition

2003-03-03
2003-01-1255
In June of 2002, 15 universities participated in the third year of FutureTruck, an advanced vehicle competition sponsored by the U.S. Department of Energy and Ford Motor Company. Using advanced technologies, teams strived to improve vehicle energy efficiency by at least 25%, reduce tailpipe emissions to ULEV levels, and lower greenhouse gas impact of a 2002 Ford Explorer. The competition vehicles were tested for dynamic performance and emissions and were judged in static events to evaluate the design and features of the vehicle. The dynamic events include braking, acceleration, handling, and fuel economy, while the dynamometer testing provided data for both the emissions event and the greenhouse gas event. The vehicles were scored for their performance in each event relative to each other; those scores were summed to determine the winner of the competition. The competition structure included different available fuels and encouraged the use of hybrid electric drivetrains.
Journal Article

CFD-Guided Combustion System Optimization of a Gasoline Range Fuel in a Heavy-Duty Compression Ignition Engine Using Automatic Piston Geometry Generation and a Supercomputer

2019-01-15
2019-01-0001
A computational fluid dynamics (CFD) guided combustion system optimization was conducted for a heavy-duty diesel engine running with a gasoline fuel that has a research octane number (RON) of 80. The goal was to optimize the gasoline compression ignition (GCI) combustion recipe (piston bowl geometry, injector spray pattern, in-cylinder swirl motion, and thermal boundary conditions) for improved fuel efficiency while maintaining engine-out NOx within a 1-1.5 g/kW-hr window. The numerical model was developed using the multi-dimensional CFD software CONVERGE. A two-stage design of experiments (DoE) approach was employed with the first stage focusing on the piston bowl shape optimization and the second addressing refinement of the combustion recipe. For optimizing the piston bowl geometry, a software tool, CAESES, was utilized to automatically perturb key bowl design parameters. This led to the generation of 256 combustion chamber designs evaluated at several engine operating conditions.
Journal Article

CFD-Guided Heavy Duty Mixing-Controlled Combustion System Optimization with a Gasoline-Like Fuel

2017-03-28
2017-01-0550
A computational fluid dynamics (CFD) guided combustion system optimization was conducted for a heavy-duty compression-ignition engine with a gasoline-like fuel that has an anti-knock index (AKI) of 58. The primary goal was to design an optimized combustion system utilizing the high volatility and low sooting tendency of the fuel for improved fuel efficiency with minimal hardware modifications to the engine. The CFD model predictions were first validated against experimental results generated using the stock engine hardware. A comprehensive design of experiments (DoE) study was performed at different operating conditions on a world-leading supercomputer, MIRA at Argonne National Laboratory, to accelerate the development of an optimized fuel-efficiency focused design while maintaining the engine-out NOx and soot emissions levels of the baseline production engine.
Technical Paper

Comparison of the Lift-Off Lengths Obtained by Simultaneous OH-LIF and OH* Chemiluminescence Imaging in an Optical Heavy-Duty Diesel Engine

2015-09-06
2015-24-2418
The presence of OH radicals as a marker of the high temperature reaction region usually has been used to determine the lift-off length (LOL) in diesel engines. Both OH Laser Induced Fluorescence (LIF) and OH* chemiluminescence diagnostics have been widely used in optical engines for measuring the LOL. OH* chemiluminescence is radiation from OH being formed in the exited states (OH*). As a consequence OH* chemiluminescence imaging provides line-of-sight information across the imaged volume. In contrast, OH-LIF provides information on the distribution of radicals present in the energy ground state. The OH-LIF images only show OH distribution in the thin cross-section illuminated by the laser. When both these techniques have been applied in earlier work, it has often been reported that the chemiluminescence measurements result in shorter lift-off lengths than the LIF approach.
Technical Paper

Comprehensive Cradle to Grave Life Cycle Analysis of On-Road Vehicles in the United States Based on GREET

2024-04-09
2024-01-2830
To properly compare and contrast the environmental performance of one vehicle technology against another, it is necessary to consider their production, operation, and end-of-life fates. Since 1995, Argonne’s GREET® life cycle analysis model (Greenhouse gases, Regulated Emissions, and Energy use in Technologies) has been annually updated to model and refine the latest developments in fuels and materials production, as well as vehicle operational and composition characteristics. Updated cradle-to-grave life cycle analysis results from the model’s latest release are described for a wide variety of fuel and powertrain options for U.S. light-duty and medium/heavy-duty vehicles. Light-duty vehicles include a passenger car, sports utility vehicle (SUV), and pick-up truck, while medium/heavy-duty vehicles include a Class 6 pickup-and-delivery truck, Class 8 day-cab (regional) truck, and Class 8 sleeper-cab (long-haul) truck.
Technical Paper

Critical Factors in the Development of Well-To-Wheel Analyses of Alternative Fuel and Advanced Powertrain Heavy-Duty Vehicles

2016-04-05
2016-01-1284
A heavy-duty vehicle (HDV) module of the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREETTM) model has been developed at Argonne National Laboratory. The fuel-cycle GREET model has been published extensively and contains data on fuel-cycles and vehicle operation of light-duty vehicles. The addition of the HDV module to the GREET model allows for well-to-wheel (WTW) analyses of heavy-duty advanced technology and alternative fuel vehicles (AFVs), which has been lacking in the literature. WTW analyses of HDVs becomes increasingly important to understand the fuel consumption and greenhouse gas (GHG) emissions impacts of newly enacted and future HDV regulations from the Environmental Protection Agency and the Department of Transportation’s National Highway Traffic Safety Administration.
Technical Paper

Design of a Rule-Based Controller and Parameter Optimization Using a Genetic Algorithm for a Dual-Motor Heavy-Duty Battery Electric Vehicle

2022-03-29
2022-01-0413
This paper describes a configuration and controller, designed using Autonomie,1 for dual-motor battery electric vehicle (BEV) heavy-duty trucks. Based on the literature and current market research, this model was designed with two electric motors, one on the front axle and the other on the rear axle. A rule-based control algorithm was designed for the new dual-motor BEV, based on the model, and the control parameters were optimized by using a genetic algorithm (GA). The model was simulated in diverse driving cycles and gradeability tests. The results show both a good following of the desired cycle and achievement of truck gradeability performance requirements. The simulation results were compared with those of a single-motor BEV and showed reduced energy consumption with the high-efficiency operation of the two motors.
Journal Article

Development of Dual-Fuel Low Temperature Combustion Strategy in a Multi-Cylinder Heavy-Duty Compression Ignition Engine Using Conventional and Alternative Fuels

2013-09-24
2013-01-2422
Low temperature combustion through in-cylinder blending of fuels with different reactivity offers the potential to improve engine efficiency while yielding low engine-out NOx and soot emissions. A Navistar MaxxForce 13 heavy-duty compression ignition engine was modified to run with two separate fuel systems, aiming to utilize fuel reactivity to demonstrate a technical path towards high engine efficiency. The dual-fuel engine has a geometric compression ratio of 14 and uses sequential, multi-port-injection of a low reactivity fuel in combination with in-cylinder direct injection of diesel. Through control of in-cylinder charge reactivity and reactivity stratification, the engine combustion process can be tailored towards high efficiency and low engine-out emissions. Engine testing was conducted at 1200 rpm over a load sweep.
Technical Paper

Effect of Fuel Temperature on the Performance of a Heavy-Duty Diesel Injector Operating with Gasoline

2021-04-06
2021-01-0547
In this last decade, non-destructive X-ray measurement techniques have provided unique insights into the internal surface and flow characteristics of automotive injectors. This has in turn contributed to enhancing the accuracy of Computational Fluid Dynamics (CFD) models of these critical injection system components. By employing realistic injector geometries in CFD simulations, designers and modelers have identified ways to modify the injectors’ design to improve their performance. In recent work, the authors investigated the occurrence of cavitation in a heavy-duty multi-hole diesel injector operating with a high-volatility gasoline-like fuel for gasoline compression ignition applications. They proposed a comprehensive numerical study in which the original diesel injector design would be modified with the goal of suppressing the in-nozzle cavitation that occurs when gasoline fuels are used.
Technical Paper

Effects of Nanofluid Coolant in a Class 8 Truck Engine

2007-11-01
2007-01-2141
The cooling system of a Class 8 truck engine was modeled using the Flowmaster computer code. Numerical simulations were performed replacing the standard coolant, 50/50 mixture of ethylene-glycol and water, with nanofluids comprised of CuO nanoparticles suspended in a base fluid of a 50/50 mixture of ethylene-glycol and water. By using engine and cooling system parameters from the standard coolant case, the higher heat transfer coefficients of the nanofluids resulted in lower engine and coolant temperatures. These temperature reductions introduced flexibility in system parameters - three of which were investigated for performance improvement: engine power, coolant pump speed and power, and radiator air-side area.
Journal Article

Efficient, Active Radiator-Cooling System

2013-05-15
2013-01-9017
A new concept for an efficient radiator-cooling system is presented for reducing the size or increasing the cooling capacity of vehicle coolant radiators. Under certain conditions, the system employs active evaporative cooling in addition to conventional finned air cooling. In this regard, it is a hybrid radiator-cooling system comprised of the combination of conventional air-side finned surface cooling and active evaporative water cooling. The air-side finned surface is sized to transfer required heat under all driving conditions except for the most severe. In the later case, evaporative cooling is used in addition to the conventional air-side finned surface cooling. Together the two systems transfer the required heat under all driving conditions. However, under most driving conditions, only the air-side finned surface cooling is required. Consequently, the finned surface may be smaller than in conventional radiators that utilize air-side finned surface cooling exclusively.
Technical Paper

Evaluating Class 6 Delivery Truck Fuel Economy and Emissions Using Vehicle System Simulations for Conventional and Hybrid Powertrains and Co-Optima Fuel Blends

2022-09-13
2022-01-1156
The US Department of Energy’s Co-Optimization of Engine and Fuels Initiative (Co-Optima) investigated how unique properties of bio-blendstocks considered within Co-Optima help address emissions challenges with mixing controlled compression ignition (i.e., conventional diesel combustion) and enable advanced compression ignition modes suitable for implementation in a diesel engine. Additionally, the potential synergies of these Co-Optima technologies in hybrid vehicle applications in the medium- and heavy-duty sector was also investigated. In this work, vehicles system were simulated using the Autonomie software tool for quantifying the benefits of Co-Optima engine technologies for medium-duty trucks. A Class 6 delivery truck with a 6.7 L diesel engine was used for simulations over representative real-world and certification drive cycles with four different powertrains to investigate fuel economy, criteria emissions, and performance.
Journal Article

Experimental Assessments of Parallel Hybrid Medium-Duty Truck

2014-05-20
2014-01-9021
Fuel consumption reduction on medium-duty tactical truck has and continues to be a significant initiative for the U.S. Army. The Crankshaft-Integrated-Starter-Generator (C-ISG) is one of the parallel hybrid propulsions to improve the fuel economy. The C-ISG configuration is attractive because one electric machine can be used to propel the vehicle, to start the engine, and to be function as a generator. The C-ISG has been implemented in one M1083A1 5-ton tactical cargo truck. This paper presents the experimental assessments of the C-ISG hybrid truck characteristics. The experimental assessments include all electric range for on- and off-road mission cycles and fuel consumption for the high voltage battery charging. Stationary tests related to the charging profile of the battery pack and the silent watch time duration is also conducted.
Technical Paper

Fan Shroud Optimization Using Adjoint Solver

2016-09-27
2016-01-8070
Fan and fan-shroud design is critical for underhood air flow management. The objective of this work is to demonstrate a method to optimize fan-shroud shape in order to maximize cooling air mass flow rates through the heat exchangers using the Adjoint Solver in STAR-CCM+®. Such techniques using Computational Fluid Dynamics (CFD) analysis enable the automotive/transport industry to reduce the number of costly experiments that they perform. This work presents the use of CFD as a simulation tool to investigate and assess the various factors that can affect the vehicle thermal performance. In heavy-duty trucks, the cooling package includes heat exchangers, fan-shroud, and fan. In this work, the STAR-CCM+® solver was selected and a java macro built to run the primal flow and the Adjoint solutions sequentially in an automated fashion.
Technical Paper

Fuel Consumption and Performance Benefits of Electrified Powertrains for Transit Buses

2018-04-03
2018-01-0321
This study presents a process to quantify the fuel saving potential of electrified powertrains for medium and heavy duty vehicles. For this study, equivalent vehicles with electrified powertrains are designed with the underlying principle of not compromising on cargo carrying capacity or performance. Several performance characteristics, that are relevant for all types of medium and heavy duty vehicles, were identified for benchmarking based on the feedback from the industry. Start-stop hybrids, parallel pre-transmission hybrids, plug-in hybrids, and battery electric vehicles are the technology choices in this study. This paper uses one vehicle as an example, explains the component sizing process followed for each powertrain, and examines each powertrain’s fuel saving potential. The process put forth in this paper can be used for evaluating vehicles that belong to all medium and heavy duty classes.
Technical Paper

Impact of Effective Compression Ratio on Gasoline-Diesel Dual-Fuel Combustion in a Heavy-Duty Engine Using Variable Valve Actuation

2015-09-01
2015-01-1796
Dual-fuel combustion using port-injected gasoline with a direct diesel injection has been shown to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. Reducing compression ratio, in conjunction with a higher expansion ratio using alternative valve timings, decreases compressed charge reactivity while maintain a high expansion ratio for maximum work extraction. Experimental testing was conducted on a 13L multi-cylinder heavy-duty diesel engine modified to operate dual-fuel combustion with port gasoline injection to supplement the direct diesel injection. The engine employs intake variable valve actuation (VVA) for early (EIVC) or late (LIVC) intake valve closing to yield reduced effective compression ratio.
Technical Paper

Machine Learning and Response Surface-Based Numerical Optimization of the Combustion System for a Heavy-Duty Gasoline Compression Ignition Engine

2021-04-06
2021-01-0190
The combustion system of a heavy-duty diesel engine operated in a gasoline compression ignition mode was optimized using a CFD-based response surface methodology and a machine learning genetic algorithm. One common dataset obtained from a CFD design of experiment campaign was used to construct response surfaces and train machine learning models. 128 designs were included in the campaign and were evaluated across three engine load conditions using the CONVERGE CFD solver. The design variables included piston bowl geometry, injector specifications, and swirl ratio, and the objective variables were fuel consumption, criteria emissions, and mechanical design constraints. In this study, the two approaches were extensively investigated and applied to a common dataset. The response surface-based approach utilized a combination of three modeling techniques to construct response surfaces to enhance the performance of predictions.
Technical Paper

Medium- and Heavy-Duty Value of Technology Improvement

2022-03-29
2022-01-0529
Improvements in vehicle technology impact the purchase price of a vehicle and its operating cost. In this study, the monetary benefit of a technology improvement includes the potential reduction in vehicle price from using cheaper or smaller components, as well as the discounted value of the fuel cost savings. As technology progresses over time, the value and benefit of improving technology varies as well. In this study, the value of improving a few selected technologies (battery energy density, electric drive efficiency, tire rolling resistance, aerodynamics, light weighting) is studied and the value of the associated cost saving is quantified. The change in saving as a function of time, powertrain selection and vehicle type is also quantified. For example, a 10% reduction in aerodynamic losses is worth $24,222 today but only $8,810 in 2030 in an electric long haul truck. The decrease in value is primarily due to expected battery cost reduction over time.
Technical Paper

Numerical Evaluation of Gasoline Compression Ignition at Cold Conditions in a Heavy-Duty Diesel Engine

2020-04-14
2020-01-0778
Achieving robust ignitability for compression ignition of diesel engines at cold conditions is traditionally challenging due to insufficient fuel vaporization, heavy wall impingement, and thick wall films. Gasoline compression ignition (GCI) has shown the potential to offer an enhanced NOx-particulate matter tradeoff with diesel-like fuel efficiency, but it is unknown how the volatility and reactivity of the fuel will affect ignition under very cold conditions. Therefore, it is important to investigate the impact of fuel physical and chemical properties on ignition under pressures and temperatures relevant to practical engine operating conditions during cold weather. In this paper, 0-D and 3-D computational fluid dynamics (CFD) simulations of GCI combustion at cold conditions were performed.
X