Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

100% LPG Long Haul Truck Conversion - Economy and Environmental Benefits

2012-09-24
2012-01-1983
Advanced Vehicle Technologies (AVT), a Ballarat Australia based company, has developed the World's first diesel to 100% LPG conversion for heavy haul trucks. There is no diesel required or utilized on the trucks. The engine is converted with minimal changes into a spark ignition engine with equivalent power and torque of the diesel. The patented technology is now deployed in 2 Mercedes Actros trucks. The power output in engine dynamometer testing exceeds that of the diesel (in excess of 370 kW power and 2700 Nm torque). In on-road application the power curve is matched to the diesel specifications to avoid potential downstream power-train stress. Testing at the Department of Transport Energy & Infrastructure, Regency Park, SA have shown the Euro 3 truck converted to LPG is between Euro 4 and Euro 5 NOx levels, CO2 levels 10% better than diesel on DT80 test and about even with diesel on CUEDC tests.
Article

13.6-L engine

2017-05-11
Designed to meet the future needs of global markets, the 13.6-L engine from John Deere Power Systems offers customers increased efficiency, installation flexibility and power in a more compact package.
Standard

15 Pole Connector Between Towing Vehicles and Trailers with 12 Volt Nominal Supply

2020-02-25
CURRENT
J2691_202002
This SAE Standard establishes the minimum construction and performance requirements for a 15 pole connector between towing vehicles and trailers, for trucks, trailers, and dollies, for 12 VDC nominal applications in conjunction with SAE J2742. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
Technical Paper

1983 Ford Ranger Truck HSLA Steel Wheel

1982-02-01
820019
The demand for improved fuel economy in both cars and trucks has emphasized the need for lighter weight components. The application of high strength steel to wheels, both rim and disc, represents a significant opportunity for the automotive industry. This paper discusses the Ranger HSLA wheel program that achieved a 9.7 lbs. per vehicle weight savings relative to a plain carbon steel wheel of the same design. It describes the Ranger wheel specifications, the material selection, the metallurgical considerations of applying HSLA to wheels, and HSLA arc and flash butt welding. The Ranger wheel design and the development of the manufacturing process is discussed, including design modifications to accommodate the lighter gage. The results demonstrate that wheels can be successfully manufactured from low sulfur 60XK HSLA steel in a conventional high volume process (stamped disc and rolled rim) to meet all wheel performance requirements and achieve a significant weight reduction.
Technical Paper

1985 Light-Duty Truck Fuel Economy

1980-10-01
801387
This paper addresses fuel economy standards that can be obtained in 1985 for two-wheel drive LDT's using existing technology. To estimate the fuel economy, the fleet of LDT's is first segmented into market classes based on the concept of utility. The 1985 sales share of each class is predicted from an extrapolation of current trends as well as published sales forecasts. The 1985 fuel economy of each market class is projected using 1) MY '80 truck technology and fuel economy as a baseline, 2) a regression equation that allows an estimate of fuel economy based on the weight, drag, and engine displacement, and 3) the addition of fuel-efficient technologies. Estimates of weight reduction and new model introduction within each market class were derived from published manufacturers' plans. Based on this methodology, this analysis concludes that a fleet fuel economy in excess of 24/25 mpg is feasible for 1985 without/with the use of diesel engines.
Standard

1995 Certified Power Engine Data for Kawasaki FX801V as used in 2017 General Purpose Engines - Level 2

2016-10-14
CURRENT
CPKW2_17FX801V
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
Technical Paper

1D Modeling of the Outwardly Opening Direct Injection for Internal Combustion Engines Operating with Gaseous and Liquid Fuels

2021-09-05
2021-24-0006
The in-cylinder direct injection of fuels can be a further step towards cleaner and more efficient internal combustion engines. However, the injector design and its characterization, both experimental and from numerical simulation require accurate diagnostics and efficient models. This work aims to simulate the complex behavior of the gaseous and liquid jets through an outwardly opening injector characterized by optical diagnostics using a one-dimensional model without using three dimensional models. The behavior of the jet from an outwardly opening injector changes according to the type of fuel. In the case of the gas, the experimental investigations put in evidence three main jet regions: 1) near-field region where the jet shows a complex gas-dynamic structure; 2) transition region characterized by intense mixing; 3) far-field region characterized by a fully developed subsonic turbulent jet.
Technical Paper

1D-3D CFD Investigations to Improve the Performance of Two-Stroke Camless Engine

2024-04-09
2024-01-2686
The transportation sector still depends on conventional engines in many countries as the alternative technologies are not mature enough to reduce carbon footprints in society. The four-stroke diesel engines, primarily used for heavy-duty applications, need either high intake boosting or a large bore to produce higher torque and power output. There is an alternative where a four-stroke engine operated in two-stroke mode with the help of a fully flexible variable valve actuation (VVA) system can achieve similar power density without raising the intake boosting or engine size. A fully flexible VVA is required to control the valve events (lift, timing, and durations) independently so that the four-stroke events can be completed in one cycle. In this study, 1D-3D CFD coupled simulations were performed to develop a gas exchange process for better air entrapment in the cylinder and evacuate the exhaust products simultaneously.
Technical Paper

2-Stroke Engine Options for Automotive Use: A Fundamental Comparison of Different Potential Scavenging Arrangements for Medium-Duty Truck Applications

2019-01-15
2019-01-0071
The work presented here seeks to compare different means of providing scavenging systems for an automotive 2-stroke engine. It follows on from previous work solely investigating uniflow scavenging systems, and aims to provide context for the results discovered there as well as to assess the benefits of a new scavenging system: the reverse-uniflow sleeve-valve. For the study the general performance of the engine was taken to be suitable to power a medium-duty truck, and all of the concepts discussed here were compared in terms of indicated fuel consumption for the same cylinder swept volume using a one-dimensional engine simulation package. In order to investigate the sleeve-valve designs layout drawings and analysis of the Rolls-Royce Crecy-type sleeve had to be undertaken.
Technical Paper

2000 University of Maryland FutureTruck Design Description

2001-03-05
2001-01-0681
The University of Maryland team converted a model year 2000 Chevrolet Suburban to an ethanol-fueled hybrid-electric vehicle (HEV) and tied for first place overall in the 2000 FutureTruck competition. Competition goals include a two-thirds reduction of greenhouse gas (GHG) emissions, a reduction of exhaust emissions to meet California ultra-low emissions vehicle (ULEV) Tier II standards, and an increase in fuel economy. These goals must be met without compromising the performance, amenities, safety, or ease of manufacture of the stock Suburban. The University of Maryland FutureTruck, Proteus, addresses the competition goals with a powertrain consisting of a General Motors 3.8-L V6 engine, a 75-kW (100 hp) SatCon electric motor, and a 336-V battery pack. Additionally, Proteus incorporates several emissions-reducing and energy-saving modifications; an advanced control strategy that is implemented through use of an on-board computer and an innovative hybrid-electric drive train.
Event

2024 NAIPC

2024-04-18
NAIPC reflects modern developments in alternative, electrified propulsion systems, high tech gasoline, diesel ICEs, hydrogen fuel cells, battery electric systems, variable transmissions.
Technical Paper

24SIAT-0900: Heavy Duty Vehicle Aftertreatment Technologies for the Future: What May Be Required at BSVII?

2024-01-16
2024-26-0149
This paper describes the after-treatment technology that could be used to meet a future BS-VII standard, considering close-coupled SCR (cc-SCR) to help start NOx conversion earlier. Both active (Cu/Fe-SCR based) and passive (V-SCR based) systems have the potential to meet emission limits. V-SCR may be considered in the rear position because V-SCR shows a fast response with very low N2O formation. Next-gen V-SCR technology shows significantly improved performance and durability closer to Cu-SCR. The steady-state NOx conversions over Next-Gen V-SCR were better than BS-VI V-SCR in both fresh and aged-580°C/100h conditions. High durability was also observed after engine aging of 1000h (WHTC + high load). Another big challenge in BS VII could be the PN10 requirement. With enhanced filtration coating (EFC) technology, PN emissions drop drastically in comparison to Euro VI reference without EFC to meet a future BS VII.
Technical Paper

250 Bar Vane Pump

1991-09-01
911801
Fixed displacement pumps will continue to be a popular choice for hydraulic system designers for decades to come. These pumps are used in almost every industrial and mobile market segment and are generally less expensive than comparable variable displacement type pumps. Fixed displacement “Vane Type” pumps are especially popular because of their low noise characteristics as well as their inherent repair features. The demand for “Vane Type” fixed displacement pumps continues to grow in all market segments. Because of this continued demand, a new design of “fixed displacement vane pumps” is being developed. These pumps, designated the VPF Series, are targeted to offer continuous operating pressures up to 280 BAR with displacements from 40 to 215 cc/rev.
Technical Paper

3-D Modeling of Diesel Engine Intake Flow, Combustion and Emissions

1991-09-01
911789
Manufacturers of heavy-duty diesel engines are facing increasingly stringent, emission standards. These standards have motivated new research efforts towards improving the performance of diesel engines. The objective of the present program is to develop a comprehensive analytical model of the diesel combustion process that can be used to explore the influence of design changes. This will enable industry to predict the effect of these changes on engine performance and emissions. A major benefit of the successful implementation of such models is that engine development time and costs would be reduced through their use. The computer model is based on the three-dimensional KIVA-II code, with state-of-the-art submodels for spray atomization, drop breakup / coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, and soot and radiation.
Technical Paper

3D Aeroacoustics Simulation of a Complete Bus Exhaust System

2012-11-25
2012-36-0632
Health related problems in over populated areas are a major concern and as such, there are specific legislations for noise generated by transport vehicles. In diesel powered commercial vehicles, the source for noise are mainly related to rolling, transmission, aerodynamics and engine. Considering internal combustion engine, three factors can be highlighted as major noise source: combustion, mechanical and tailpipe. The tailpipe noise is considered as the noise radiated from the open terminations of intake and exhaust systems, caused by both pressure pulses propagating to the open ends of the duct systems, and by vortex shedding as the burst leaves the tailpipe (flow generated noise). In order to reduce noise generated by vehicles, it is important to investigate the gas interactions and what can be improved in exhaust line design during the product development phase.
Technical Paper

3D-CFD Modelling of Gas Exchange and Combustion Inside the Expander of a Recuperated Split-Cycle Engine

2023-08-28
2023-24-0130
The demand of game-changing technologies to improve efficiency and abate emissions of heavy-duty trucks and off-road vehicles promoted the development of novel engine concepts. The Recuperated Split-Cycle (R-SC) engine allows to recover the exhaust gases energy into the air intake by separating the compression and combustion stages into two different but connected cylinders: the compressor and expander, respectively. The result is a potential increase of the engine thermal efficiency. Accordingly, the 3D-computational fluid dynamics (CFD) modelling of the gas exchange process and the combustion evolution inside the expander becomes essential to control and optimize the R-SC engine concept. This work aims to address the most challenging numerical aspects encountered in a 3D numerical simulation of an R-SC engine.
Journal Article

3D-CFD-Study of Aerodynamic Losses in Compressor Impellers

2018-07-05
Abstract Due to the increasing requirements for efficiency, the wide range of characteristics and the improved possibilities of modern development and production processes, compressors in turbochargers have become more individualized in order to adapt to the requirements of internal combustion engines. An understanding of the working mechanisms as well as an understanding of the way that losses occur in the flow allows a reduced development effort during the optimization process. This article presents three-dimensional (3D) Computational Fluid Dynamics (CFD) investigations of the loss mechanisms and quantitative calculations of individual losses. The 3D-CFD method used in this article will reduce the drawbacks of one-dimensional calculation as far as possible. For example, the twist of the blades is taken into account and the “discrete” method is used for loss calculation instead of the “average” method.
Technical Paper

4 x 4 Highway Tractor Concepts

1972-02-01
720901
Two new 4 X 4 drivetrain systems have been developed for highway tractors that are used to pull multiple trailer combinations. The first one is a 4 X 2 that automatically becomes a 4 X 4 when conditions exist that require 4 X 4 operation. The second one is a full-time 4 X 4 that proportions the drive torque 36% to the front axle and 64% to the rear axle. A unique front driving steering axle has also been developed that permits a 4 X 4 system to be installed in a standard 4 X 2 truck. There is no need to relocate any major components to make space available for a front driving steering axle.
Technical Paper

48 V Diesel Hybrid - Advanced Powertrain Solution for Meeting Future Indian BS 6 Emission and CO2 Legislations

2019-01-09
2019-26-0151
The legislations on emission reduction is getting stringent everywhere in the world. India is following the same trend, with Government of India (GOI) declaring the nationwide implementation of BS 6 legislation by April 2020 and Real Driving Emission (RDE) Cycle relevant legislation by 2023. Additionally GOI is focusing on reduction of CO2 emissions by introduction of stringent fleet CO2 targets through CAFE regulation, making it mandatory for vehicle manufacturers to simultaneously work on gaseous emissions and CO2 emissions. Simultaneous NOx emission reduction and CO2 reduction measures are divergent in nature, but with a 48 V Diesel hybrid, this goal can be achieved. The study presented here involves arriving at the right future hybrid-powertrain layout for a Sports Utility Vehicle (SUV) in the Indian scenario to meet the future BS 6 and CAFÉ legislations. Diesel engines dominate the current LCV and SUV segments in India and the same trend can be expected to continue in future.
X