Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Challenges Overwhelmed to Meet BSVI Emissions with SPFI Fuel System for Heavy-Duty CNG Engine Application

2021-09-22
2021-26-0102
As competent and low-pollution alternative fuel, CNG has revealed its excellence over engine performance and emissions. In recent years, CNG is considered as the diesel engine alternative fuel for heavy-duty engine applications due to its lower emissions and cost effective after-treatment systems. Due to the implementation of stricter emission norms over the years, the evolution of the fuel supply system has become more robust and electronically controlled. In the case of CNG engines, most of the engines were equipped with MPFI fuel system, for its precise fuel control abilities and controlling emission parameters. However, this MPFI system encompasses severe design changes in the intake manifold and is cost worthy to OEMs over the SPFI fuel system. MPFI system adds on the overall cost of the engine unit and its maintenance when compared to SPFI system.
Technical Paper

Development of Dual Fuel (Diesel + CNG) Engine for Off-Road Application

2021-09-22
2021-26-0119
The evolution of engine technology has so far seen the most beneficial side of progress in the fields of transportation, agriculture, and mobility. With the advent of innovation, there is also an impact on our environment that needs to be balanced. This is where fuels like CNG, LPG, LNG, etc. outperform conventional fossil fuels in terms of pollution & operational cost. This paper enlightens on the use of innovative dual-fuel technology where diesel & CNG fuels are used for combustion simultaneously inside the combustion chamber. Dual fuel system adaptation for farm application ensures self-reliance of the farmer where he can generate Bio-CNG to use the renewable fuel for farming making him less dependent on conventional fossil fuel thus promoting a green economy. The dual-fuel system is adapted to the existing in-use diesel engine with minimum modifications. This makes it feasible to retrofit a CNG fuel system on an existing diesel engine to operate it on dual fuel mode.
Journal Article

Development of Multi Cylinder Turbocharged Natural Gas Engine for Heavy Duty Application

2017-01-10
2017-26-0065
CNG has recently seen increased penetration within the automotive industry. Due to recent sanctions on diesel fuelled vehicles, manufactures have again shifted their attention to natural gas as a suitable alternative. Turbocharging of SI engines has seen widespread application due to its benefit in terms of engine downsizing and increasing engine performance [1]. This paper discusses the methodology involved in development of a multi cylinder turbocharged natural gas engine from an existing diesel engine. Various parameters such as valve timing, intake volume, runner length, etc. were studied using 1D simulation tool GT power and based on their results an optimized configuration was selected and a proto engine was built. Electronic throttle body was used to give better transient performance and emission control. Turbocharger selection and its location plays a critical role.
Technical Paper

EGR Strategies Pertaining to High Pressure and Low Pressure EGR in Heavy Duty CNG Engine to Optimize Exhaust Temperature and NOx Emissions

2021-09-22
2021-26-0114
CNG has proven to be a concrete alternative to gasoline and diesel fuel for sustained mobility. Due to stringent emission norms and sanctions being imposed on diesel fuel vehicles, OEMs have shifted their attention towards natural gas as an efficient and green fuel. Newly implemented BS VI emission norms in India have stressed on the reduction of Nitrogen Oxides (NOx) from the exhaust by almost 85% as compared to BS IV emission norms. Also, Indian Automotive market is fuel economy cautious. This challenges to focus on improving fuel economy but without increase in NOx emissions. Exhaust Gas Recirculation (EGR) has the potential to reduce the NOx emissions by decreasing the in-cylinder temperature. The objective of the paper is to model a CNG TCIC engine using 1D simulation in order to optimize the NOx emissions and maintain exhaust temperatures under failsafe limits.
Journal Article

Effect of CCV and OCV System in Heavy Duty CNG Engine on the Particulate Emissions

2021-09-22
2021-26-0116
Due to increasing pollution and climatic cries, newly implemented BS-VI emission norms in India have stressed the reduction of emission. For which many automobiles have been shifted to alternate fuels like CNG. Also, the Indian Automotive market is fuel economy cautious. This challenges to focus on improving fuel economy but without an increase in emissions. Crankcase blow-by gases can be an important source of particulate emission as well as other regulated and unregulated emissions. They can also contribute to the loss of lubricating oil and fouling of surface and engine components. Closed Crankcase Ventilation (CCV) or Open Crankcase Ventilation (OCV) is capable to reduce particulate emissions by removing the oil mist that is caused mainly due to blow-by in the combustion chamber. This paperwork is focused, to measure the effectiveness of the CCV and OCV systems on the engine-out emissions, primarily on the particulate emissions.
Technical Paper

Experimental Analysis of Heavy Duty CNG Engine Based on Its Aspiration and Fuel System

2021-09-22
2021-26-0117
Engine calibration involves the interaction of electronic components with various engine systems like intake system, exhaust system, ignition system, etc. Emissions are the by-products of combustion of fuel and air inside the combustion chamber. After-treatment systems generally take up the responsibility to scrape out harmful emissions from the engines. However, a good engine calibration will focus on emission reduction at source i.e., during the combustion itself. Thus, the intake of air and fuel in proper amount at each engine operating point is crucial for optimized engine performance and minimal emissions. The Intake system is an integral part of any internal combustion engine and it plays an important role to improve its performance and emission. Generally, for a SI engine, maintaining the stoichiometric A/F ratio is a challenging endeavour from an operational standpoint.
X