Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1985 Light-Duty Truck Fuel Economy

1980-10-01
801387
This paper addresses fuel economy standards that can be obtained in 1985 for two-wheel drive LDT's using existing technology. To estimate the fuel economy, the fleet of LDT's is first segmented into market classes based on the concept of utility. The 1985 sales share of each class is predicted from an extrapolation of current trends as well as published sales forecasts. The 1985 fuel economy of each market class is projected using 1) MY '80 truck technology and fuel economy as a baseline, 2) a regression equation that allows an estimate of fuel economy based on the weight, drag, and engine displacement, and 3) the addition of fuel-efficient technologies. Estimates of weight reduction and new model introduction within each market class were derived from published manufacturers' plans. Based on this methodology, this analysis concludes that a fleet fuel economy in excess of 24/25 mpg is feasible for 1985 without/with the use of diesel engines.
Technical Paper

3-D Modeling of Diesel Engine Intake Flow, Combustion and Emissions

1991-09-01
911789
Manufacturers of heavy-duty diesel engines are facing increasingly stringent, emission standards. These standards have motivated new research efforts towards improving the performance of diesel engines. The objective of the present program is to develop a comprehensive analytical model of the diesel combustion process that can be used to explore the influence of design changes. This will enable industry to predict the effect of these changes on engine performance and emissions. A major benefit of the successful implementation of such models is that engine development time and costs would be reduced through their use. The computer model is based on the three-dimensional KIVA-II code, with state-of-the-art submodels for spray atomization, drop breakup / coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, and soot and radiation.
Technical Paper

48 V Diesel Hybrid - Advanced Powertrain Solution for Meeting Future Indian BS 6 Emission and CO2 Legislations

2019-01-09
2019-26-0151
The legislations on emission reduction is getting stringent everywhere in the world. India is following the same trend, with Government of India (GOI) declaring the nationwide implementation of BS 6 legislation by April 2020 and Real Driving Emission (RDE) Cycle relevant legislation by 2023. Additionally GOI is focusing on reduction of CO2 emissions by introduction of stringent fleet CO2 targets through CAFE regulation, making it mandatory for vehicle manufacturers to simultaneously work on gaseous emissions and CO2 emissions. Simultaneous NOx emission reduction and CO2 reduction measures are divergent in nature, but with a 48 V Diesel hybrid, this goal can be achieved. The study presented here involves arriving at the right future hybrid-powertrain layout for a Sports Utility Vehicle (SUV) in the Indian scenario to meet the future BS 6 and CAFÉ legislations. Diesel engines dominate the current LCV and SUV segments in India and the same trend can be expected to continue in future.
Book

6th AVL International Commercial Powertrain Conference Proceedings (2011)

2011-05-25
The AVL International Commercial Powertrain Conference is the premier forum for truck, agricultural and construction equipment manufacturers to discuss powertrain technology challenges and solutions across their industries. The topics of the conference, which happens every two years, cover all five elements of a modern powertrain: engine, transmission, electric motor, battery and the electronic control which are used basically the same way in the quest for optimal efficiency and environmental compatibility. This event offers a unique opportunity for highly regarded professionals to address the synergy effects and distinctive characteristics of commercial vehicles, agricultural tractors and non-road vehicles, and industrial machinery. These proceedings are being co-published with SAE International, via a strategic partnership.
Technical Paper

A Band Variable-Inertia Flywheel Integrated-Urban Transit Bus Performance

1990-10-01
902280
By means of computer simulation, the potential of a Band Variable-Inertia Flywheel (BVIF) as an energy storage device for a diesel engine city bus is evaluated. Replacing both a fixed-inertia flywheel (FIF) and a continuously variable transmission (CVT), the BVIF is capable of accelerating a vehicle from rest to a nearly-constant speed, while recovering part of the kinetic energy normally dissipated through braking of the vehicle. The results are compared with that of conventionally-powered bus. A fuel saving of up to 30 percent is shown with the BVIF-integrated system. The regenerative braking system reduces brake wear by a factor of five in comparison with the conventional vehicle.
Technical Paper

A Basis for Estimating Mechanical Efficiency and Life of a Diesel Engine from its Size, Load Factor and Piston Speed

2011-09-13
2011-01-2211
Parameters like brake mean effective pressure, mean velocity of the piston, hardness of the wear surface, oil film thickness, and surface areas of critical wear parts are similar for all the diesel engines. The mean piston velocity at the rated speed is nearly the same for all the diesel engines. The mechanical efficiency normalized to an arbitrary brake mean effective pressure (bmep) is dependent on the size of the engine. The engine life seems to be proportional directly to the square of a characteristic dimension namely, cylinder bore of the engine and inversely to speed and load factor for engines varying widely in sizes and ratings.
Technical Paper

A Closed Cycle Simulation Model with Particular Reference to Two-Stroke Cycle Engines

1991-09-01
911847
A quasi-dimensional computer simulation model is presented to simulate the thermodynamic and chemical processes occurring within a spark ignition engine during compression, combustion and expansion based upon the laws of thermodynamics and the theory of equilibrium. A two-zone combustion model, with a spherically expanding flame front originating from the spark location, is applied. The flame speed is calculated by the application of a turbulent entrainment propagation model. A simplified theory for the prediction of in-cylinder charge motion is proposed which calculates the mean turbulence intensity and scale at any time during the closed cycle. It is then used to describe both heat transfer and turbulent flame propagation. The model has been designed specifically for the two-stroke cycle engine and facilitates seven of the most common combustion chamber geometries. The fundamental theory is nevertheless applicable to any four-stroke cycle engine.
Technical Paper

A Comprehensive Phenomenological Model of the Jet Mixing Process in D.I. Diesel Engines

1986-09-01
861273
The paper describes a detailed mathematical analysis of the problem of jet mixing in swirling or transverse flow fields under non-isothermal, non-isodense conditions. The model takes into account potential core effects, cross sectional distortion and differences in profiles between the distributed properties (velocity, concentration, temperature and density). Comparisons with a wide range of experimental results have produced excellent agreement.
Technical Paper

A Computational Investigation into the Effects of Included Spray Angle on Heavy-Duty Diesel Engine Operating Parameters

2012-09-10
2012-01-1714
Effects of included spray angle with different injection strategies on combustion characteristics, performance and amount of pollutant emission have been computationally investigated in a common rail heavy-duty DI diesel engine. The CFD model was firstly validated with experimental data achieved from a Caterpillar 3401 diesel engine for a conventional part load condition at 1600 rev/min. Three different included spray angles (α = 145°, 105°, 90°) were studied in comparison with the traditional spray injection angle (α = 125°). The results show that spray targeting is very effective for controlling the in-cylinder mixture distributions especially when it accompanied with various injection strategies. It was found that 105° spray cone angle along with an optimized split pre- and post-Top Dead Center (TDC) injection strategy could significantly reduce NOx and soot emissions without much penalty of the fuel consumption, as compared to the wide spray angle.
Technical Paper

A Computer Cooling System Study of a Diesel Powered Truck for Control of Transient Coolant, Oil and Cab Temperatures

1982-02-01
821049
A Vehicle-Engine-Cooling (VEC) system computer simulation model was used to study the transient performance of control devices and their temperature settings on oil, coolant and cab temperatures. The truck used in the study was an International Harvester COF-9670 cab over chassis heavy-duty vehicle equipped with a standard cab heater, a Cummins NTC-350 diesel engine with a McCord radiator and standard cooling system components and aftercooler. Input data from several portions of a Columbus to Bloomington, Indiana route were used from the Vehicle Mission Simulation (VMS) program to determine engine and vehicle operating conditions for the VEC system computer simulation model. The control devices investigated were the standard thermostat, the Kysor fan-clutch and shutter system. The effect of shutterstat location on shutter performance along with thermostat, shutter and fan activation temperature settings were investigated for ambient temperatures of 32, 85 and 100°F.
Technical Paper

A Correlation Analysis of the Roles of Soot Formation and Oxidation in a Heavy-Duty Diesel Engine

2013-10-14
2013-01-2535
Emissions and in-cylinder pressure traces are used to compare the relative importance of soot formation and soot oxidation in a heavy-duty diesel engine. The equivalence ratio at the lift-off length is estimated with an empirical correlation and an idealized model of diesel spray. No correlation is found between the equivalence ratio at lift-off and the soot emissions. This confirms that trends in soot emissions cannot be directly understood by the soot formation process. The coupling between soot emission levels and late heat release after end of injection is also studied. A regression model describing soot emissions as function of global engine parameters influencing soot oxidation is proposed. Overall, the results of this analysis indicate that soot emissions can be understood in terms of the efficiency of the oxidation process.
Technical Paper

A Demonstration of Methanol-Powered Buses in Windsor Ontario

1994-11-01
942314
Emissions from heavy-duty diesel vehicles have come under increased scrutiny with passage of the U.S. Clean Air Act Amendments of 1990. Methanol (M100) is seen as an important option for operators of transit fleets given the fuel's liquid nature and relative availability. This paper presents the results of a 36-month demonstration of a fleet of six methanol-powered transit buses equipped with DDC 6V-92TA engines. The engines were delivered in 1991 and were the first batch of Detroit Diesel engines certified to meet 1991 clean air standards. A similarly equipped control fleet of six diesel buses was tracked simultaneously. This paper includes an evaluation of bus operating data and emissions. Data such as fuel and oil consumption were collected along with a complete list of maintenance actions on both fleets. Chassis dynamometer emissions testing was carried out by Environment Canada at their River Road (Ottawa) test facility.
Technical Paper

A Demonstration of Transit Bus Particulate Traps in Ottawa Ontario

1995-11-01
952651
Heavy-duty diesel engines for transit bus applications are having to meet increasingly stringent emission standards. The new engines are significantly cleaner than they were just a few years ago. However, due to the long life of transit buses in Ontario (18 years), many buses still in service are powered by older engines which produce greater amounts of regulated exhaust emissions. The Ottawa-Carleton Regional Transit Commission (OC Transpo) has an interest in reducing emissions from older transit buses in their fleet. Eight Donaldson particulate trap systems were installed on transit buses. The purpose of the work, involving four different bus/engine combinations, was to assess the practicality and benefits of particulate traps in transit applications. This paper discusses the demonstration of diesel exhaust particulate traps in Ottawa-based transit buses.
Technical Paper

A Design of Cooling Water Jacket Structure and an Analysis of Its Coolant Flow Characteristics for a Horizontal Diesel Engine

2011-09-13
2011-01-2187
In order to fulfill the technical requirements of a high-efficiency low-emissions off-road horizontal diesel engine, a unique design is proposed and optimized in this paper for the cooling water jacket structure with a forced-cooling closed-loop cooling system. The cooling water flow rate, temperature, and pressure at the inlet and several other critical locations of the cooling water jacket were measured and analyzed at different engine operating conditions for the water jacket designs. A numerical simulation model of the coolant flow and the cooling system was built and used to analyze the thermal/fluid characteristics of the coolant flow in the water jacket. The impact of different structural and packaging design parameters on coolant flow and heat transfer was investigated. The design deficiency of an original (earlier) design of the water jacket was pointed out and an improved design was proposed.
Technical Paper

A Dual-Fuel Model of Flame Initiation and Propagation for Modelling Heavy-Duty Engines with the G-Equation

2023-09-29
2023-32-0009
We propose a novel dual-fuel combustion model for simulating heavy-duty engines with the G-Equation. Dual-Fuel combustion strategies in such engines features direct injection of a high-reactivity fuel into a lean, premixed chamber which has a high resistance to autoignition. Distinct combustion modes are present: the DI fuel auto-ignites following chemical ignition delay after spray vaporization and mixing; a reactive front is formed on its surroundings; it develops into a well-structured turbulent flame, which propagates within the premixed charge. Either direct chemistry or the flame-propagation approach (G- Equation), taken alone, do not produce accurate results. The proposed Dual-Fuel model decides what regions of the combustion chamber should be simulated with either approach, according to the local flame state; and acts as a “kernel” model for the G- Equation model. Direct chemistry is run in the regions where a premixed front is not present.
Technical Paper

A Fast Start-Up On-Board Diesel Fuel Reformer for NOx Trap Regeneration and Desulfation

2004-10-26
2004-01-2684
This paper describes recent progress in our program to develop an emissions technology allowing diesel engines to meet the upcoming 2007/2010 regulations for NOx. At the heart of this technology is the ArvinMeritor Diesel Fuel Reformer that reforms the fuel, on-demand, on-board a vehicle. The fuel reformer uses plasma to partially oxidize a mixture of diesel fuel and air creating a highly reducing mixture of Hydrogen and Carbon monoxide. In a previous publication, we have demonstrated that using a reformate rich in H2 and CO to regenerate a NOx trap is highly advantageous compared to vaporized diesel fuel used conventionally. In this paper we present results and a strategy for performing desulfation of the traps using the fuel reformer. In contrast to vaporized diesel, which requires very high temperatures that fall outside the normal exhaust operating temperatures for diesel engines, desulfation was achieved at temperatures lower by more than 100 °C using the Plasma Fuel Reformer.
Journal Article

A Guide to Uncertainty Quantification for Experimental Engine Research and Heat Release Analysis

2019-08-22
Abstract Performing an uncertainty analysis for complex measurement tasks, such as those found in engine research, presents unique challenges. Also, because of the excessive computational costs, modeling-based approaches, such as a Monte Carlo approach, may not be practical. This work provides a traditional statistical approach to uncertainty analysis that incorporates the uncertainty tree, which is a graphical tool for complex uncertainty analysis. Approaches to calculate the required sensitivities are discussed, including issues associated with numerical differentiation, numerical integration, and post-processing. Trimming of the uncertainty tree to remove insignificant contributions is discussed. The article concludes with a best practices guide in the Appendix to uncertainty propagation in experimental engine combustion post-processing, which includes suggested post-processing techniques and down-selected functional relationships for uncertainty propagation.
Journal Article

A High Efficiency, Dilute Gasoline Engine for the Heavy-Duty Market

2012-09-24
2012-01-1979
A 13 L HD diesel engine was converted to run as a flame propagation engine using the HEDGE™ Dual-Fuel concept. This concept consists of pre-mixed gasoline ignited by a small amount of diesel fuel - i.e., a diesel micropilot. Due to the large bore size and relatively high compression ratio for a pre-mixed combustion engine, high levels of cooled EGR were used to suppress knock and reduce the engine-out emissions of the oxides of nitrogen and particulates. Previous work had indicated that the boosting of high dilution engines challenges most modern turbocharging systems, so phase I of the project consisted of extensive simulation efforts to identify an EGR configuration that would allow for high levels of EGR flow along the lug curve while minimizing pumping losses and combustion instabilities from excessive backpressure. A potential solution that provided adequate BTE potential was consisted of dual loop EGR systems to simultaneously flow high pressure and low pressure loop EGR.
Technical Paper

A High Efficient Dynamic Short Test for Vehicle Emissions

1987-11-01
872099
During the past decades the public acceptance of the actual environmental legislation has gradually turned into an active support of the same. Test methods have anyhow become more cost heavy and time consuming, underlining the need of simplified tests with reasonable correlation to the legal methods. Generally, the emissions under static and semistatic load conditions are gradually eliminated, why the heavy pollution now comes from transient periods of the driving pattern. Consequently a transient test procedure must satisfy the quality requirements on a short test applicable to vehicles from cars to heavy trucks and busses. The INertia COLLection system described here is developed to enable low cost and well repeatable measurements of the emission characteristics of engine systems in light and heavy vehicles under transient load. The system is easy to adopt and does not need any chassis dynamometer.
X