Refine Your Search

Topic

Author

Affiliation

Search Results

Standard

1995 Certified Power Engine Data for Kawasaki FX801V as used in 2017 General Purpose Engines - Level 2

2016-10-14
CURRENT
CPKW2_17FX801V
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
Technical Paper

3D Aeroacoustics Simulation of a Complete Bus Exhaust System

2012-11-25
2012-36-0632
Health related problems in over populated areas are a major concern and as such, there are specific legislations for noise generated by transport vehicles. In diesel powered commercial vehicles, the source for noise are mainly related to rolling, transmission, aerodynamics and engine. Considering internal combustion engine, three factors can be highlighted as major noise source: combustion, mechanical and tailpipe. The tailpipe noise is considered as the noise radiated from the open terminations of intake and exhaust systems, caused by both pressure pulses propagating to the open ends of the duct systems, and by vortex shedding as the burst leaves the tailpipe (flow generated noise). In order to reduce noise generated by vehicles, it is important to investigate the gas interactions and what can be improved in exhaust line design during the product development phase.
Technical Paper

A CFD Multidimensional Approach to Hydraulic Components Design

2007-10-30
2007-01-4196
This paper presents a multidimensional approach to the hydraulic components design by means of an open-source fluid dynamics code. A preliminary study of a basic geometry was carried out by simulating the efflux of an incompressible fluid through circular pipes. Both laminar and turbulent conditions were analyzed and the influence of the grid resolution and modeling settings were investigated. A qualitative description of the internal flow-field distribution, and a quantitative comparison of pressure and velocity profiles along the pipe axis were used to asses the multidimensional open-source code capabilities. Moreover the results were compared with the experimental measurements available in literature and with the theoretical trends which can be found in well-known literature fundamentals (Hagen-Poiseuille theory and Nikuradse interpolation). Further comparison was performed by using a commercial CFD code.
Technical Paper

A Compact Cooling System (CCS™): The Key to Meet Future Demands in Heavy Truck Cooling

2001-05-14
2001-01-1709
To meet future needs for heavy truck cooling, a novel high performance radial compact cooling system (CCS) was developed. Measurements with a prototype system were conducted in a component wind tunnel and with truck-installed systems in a climatic vehicular wind tunnel. The CSS is compared to conventional axial and side-by-side systems. In comparison with a conventional axial system, the performance per unit volume of the CCS is 42% higher, the noise level is about 6 dB lower and the power consumption of the radial fan is 70% of the axial fan leading to significant savings in fuel consumption.
Technical Paper

A Comparative Study of Automotive System Fatigue Models Processed in the Time and Frequency Domain

2016-04-05
2016-01-0377
The objective of this paper is to demonstrate that frequency domain methods for calculating structural response and fatigue damage can be more widely applicable than previously thought. This will be demonstrated by comparing results of time domain vs. frequency domain approaches for a series of fatigue/durability problems with increasing complexity. These problems involve both static and dynamic behavior. Also, both single input and multiple correlated inputs are considered. And most important of all, a variety of non-stationary loading types have been used. All of the example problems investigated are typically found in the automotive industry, with measured loads from the field or from the proving ground.
Technical Paper

A Comparison Of The Dynamic Performance Of A U.S. And A European Heavy Vehicle

1988-09-01
885111
Despite the general similarity of U.S. and European heavy trucks, there are differences in design properties that affect braking and turning performance. A European tractor-semitrailer was studied for the purpose of comparing its properties to those of U.S. vehicles and assessing the comparative performance. Mass, suspension, and braking system properties of the European tractor and semitrailer were measured in the laboratory and on the proving ground. Turning and braking performance qualities were evaluated by computer simulation and by experimental tests. In turning performance the European combination had a 9 percent advantage in rollover threshold, compared to a generic U.S. vehicle with properties that were in the midrange of U.S. design practice. Higher suspension roll stiffness and higher chassis weight on the European tractor and semitrailer accounted for the higher threshold.
Journal Article

A Comparison of Full Scale Aft Cavity Drag Reduction Concepts With Equivalent Wind Tunnel Test Results

2013-09-24
2013-01-2429
Comparison studies have been conducted on a 1:16th scale model and a full scale tractor trailer of a variety of sealed aft cavity devices as a means to develop or enhance commercial drag reduction technology for class 8 vehicles. Various base cavity geometries with pressure taps were created for the scale model. The studies confirmed that length has an important effect on performance. The interaction of the boat-tailed aft cavity with other drag reduction devices, specifically side skirts, was investigated with results showing no discernable drag performance interaction between them. Overall, the experiments show that a boat-tailed aft cavity can reduce the drag up to 13%. Full-scale tests of a commercially derived product based on these scale tests were also completed using SAE Type II testing procedures. Full-scale tests indicated a fuel savings of over 6.5%.
Technical Paper

A Comparison of HEV Engine Operation and HD Engine Emissions Test Cycles

2000-12-04
2000-01-3469
Currently, all heavy-duty on-road engines in the USA are certified for emissions compliance using the Federal Test Procedure (FTP) heavy-duty transient cycle. The engine in a hybrid drive system, on the other hand, is controlled at a more steady-state level to reduce emissions over conventional drive systems. In this study, Allison Electric Drive seeks a better standardized emissions test cycle to certify (in the near term) engines which will be used in parallel and series hybrid drive systems. Actual revenue service data from a transit hybrid electric vehicle (HEV) was compared to several standard engine test cycles including the US FTP, ISO 8178 (a collection of many steady-state cycles), the Euro III (ESC) 13-mode cycle, and the Japanese 13-mode cycle. Graphical analysis of actual hybrid engine data revealed that the ESC cycle reflects field data better than other cycles, including the US FTP, which has little correlation.
Technical Paper

A Comparison of Time Domain and Frequency Domain Test Methods for Automotive Components

1994-11-01
942279
Frequency domain testing has had limited use in the past for durability evaluations of automotive components. Recent advances and new perspectives now make it a viable option. Using frequency domain testing for components, test times can be greatly reduced, resulting in considerable savings of time, money, and resources. Quality can be built into the component, thus making real-time subsystem and full vehicle testing and development more meaningful. Time domain testing historically started with block cycle histogram tests. Improved capabilities of computers, controllers, math procedures, and algorithms have led to real time simulation in the laboratory. Real time simulation is a time domain technique for duplicating real world environments using computer controlled multi-axial load inputs. It contains all phase information as in the recorded proving ground data. However, normal equipment limitations prevent the operation at higher frequencies.
Technical Paper

A Computer Simulation of the Effect of Wind on Heavy Truck Fuel Consumption Testing

2010-10-05
2010-01-2039
A computer simulation was developed to investigate the effect of wind on test track estimation of heavy truck fuel efficiency. Monte Carlo simulations were run for various wind conditions, both with and without gusts, and for two different vehicle aerodynamic configurations. The vehicle configurations chosen for this study are representative of typical Class 8 tractor trailers and use wind tunnel measured drag polars for performance computations. The baseline (control) case is representative of a modern streamlined tractor and conventional trailer. The comparison (test) case is the baseline case with the addition of a trailer drag reduction device (trailer skirt). The integrated drag coefficient, overall required power, total fuel consumption, and average rate of fuel consumption were calculated for a heavy truck on an oval test track to show the effect of wind on test results.
Technical Paper

A Correlation Study Between Two Heavy-Duty Vehicle Chassis Dynamometer Emissions Testing Facilities

1993-08-01
931788
A correlation study of vehicle exhaust emissions measurements was conducted by the West Virginia University (WVU) Transportable Heavy-Duty Vehicle Emissions Testing Laboratory and the Los Angeles County Metropolitan Transportation Authority (MTA) Emissions Testing Facility. A diesel fueled transit bus was tested by both chassis dynamometer emissions testing laboratories. Exhaust emissions were sampled from the tested vehicle during the operation of the Federal Transit Administration (FTA) Central Business District (CBD) testing cycle. Data of gaseous and particulate matter emissions was obtained at each testing laboratory. The emissions results were compared to evaluate the effects of different equipment, test procedures, and drivers on the measurements of exhaust emissions of heavy-duty vehicles operated on a chassis dynamometer.
Technical Paper

A Coupled Approach to Truck Drum Brake Cooling

2015-09-29
2015-01-2901
Trucks can carry heavy load and when applying the brakes during for example a mountain downhill or for an abrupt stop, the brake temperatures can rise significantly. Elevated temperatures in the drum brake region can reduce the braking efficiency or can even cause the brake system to fail, catch fire or even break. It therefore needs to be designed such to be able to transfer the heat out of its system by convection, conduction and/or radiation. All three heat transfer modes play an important role since the drum brakes of trucks are not much exposed to external airflow, a significant difference from disk brakes of passenger cars analyzed in previous studies. This makes it a complex heat transfer problem which is not easy to understand. Numerical methods provide insight by visualization of the different heat transfer modes. Presented is a numerical method that simulates the transient heat transfer of a truck drum brake system cooldown at constant driving speed.
Technical Paper

A Demonstration of Methanol-Powered Buses in Windsor Ontario

1994-11-01
942314
Emissions from heavy-duty diesel vehicles have come under increased scrutiny with passage of the U.S. Clean Air Act Amendments of 1990. Methanol (M100) is seen as an important option for operators of transit fleets given the fuel's liquid nature and relative availability. This paper presents the results of a 36-month demonstration of a fleet of six methanol-powered transit buses equipped with DDC 6V-92TA engines. The engines were delivered in 1991 and were the first batch of Detroit Diesel engines certified to meet 1991 clean air standards. A similarly equipped control fleet of six diesel buses was tracked simultaneously. This paper includes an evaluation of bus operating data and emissions. Data such as fuel and oil consumption were collected along with a complete list of maintenance actions on both fleets. Chassis dynamometer emissions testing was carried out by Environment Canada at their River Road (Ottawa) test facility.
Technical Paper

A Demonstration of Transit Bus Particulate Traps in Ottawa Ontario

1995-11-01
952651
Heavy-duty diesel engines for transit bus applications are having to meet increasingly stringent emission standards. The new engines are significantly cleaner than they were just a few years ago. However, due to the long life of transit buses in Ontario (18 years), many buses still in service are powered by older engines which produce greater amounts of regulated exhaust emissions. The Ottawa-Carleton Regional Transit Commission (OC Transpo) has an interest in reducing emissions from older transit buses in their fleet. Eight Donaldson particulate trap systems were installed on transit buses. The purpose of the work, involving four different bus/engine combinations, was to assess the practicality and benefits of particulate traps in transit applications. This paper discusses the demonstration of diesel exhaust particulate traps in Ottawa-based transit buses.
Technical Paper

A Design Methodology for Reducing Product Development Lead Time

1983-09-12
831341
The need for a foreshortened product development lead time has become a necessity, in today's economy, to the efficient manufacturing of off-highway mining trucks. This paper reviews the approach taken by one noted truck manufacturer. By utilizing finite element analysis, plastic scale modeling techniques, and a comprehensive full scale test facility, the development lead time of the WABCO 100 Ton HAULPAK* was reduced to 60% of that normally required for the development of a new product from conceptual layout to production release.
Technical Paper

A Facility for the Measurement of Heavy Truck Chassis and Suspension Kinematics and Compliances

2004-10-26
2004-01-2609
This paper will present an overview of a new facility capable of measuring the kinematic and compliance (K&C) properties of heavy trucks. In this facility, the vehicle is positioned on the test rig and evaluated as a complete vehicle under normal loading conditions. The test rig can accommodate heavy trucks and tractors in two-axle or three-axle configurations. Kinematic and compliance characteristics of the front and rear suspensions and the steering system are evaluated as a function of vertical suspension deflection and roll, and as a function of longitudinal driving and braking forces and lateral cornering forces applied at the tire contact patch. A description of the test rig, including layout, instrumentation, actuators, and controls will be presented. The test methodology and a description of the test results will also be presented.
Technical Paper

A Field Performance Prediction Technique for Light Truck Structural Components

1979-02-01
791034
A method has been developed which allows prediction of the field performance of structural components based on prototype vehicle test procedures and results. Component designs can then be optimized by selecting prototype durability test objectives which more accurately reflect actual field usage. This procedure, which is based on fatigue damage calculations from component strain histories, has been successfully applied to non-safety related body, frame and suspension structural components of light trucks and vans.
Technical Paper

A Fuel Economy Evaluation of a Safety Compliant Single Passenger Vehicle

1992-09-01
921664
The Nexus vehicle was designed and built for Transport Canada at the University of Saskatchewan to demonstrate that a safety compliant single passenger commuter vehicle could attain extremely low fuel consumption rates at modest highway speeds. Experimentally determined steady state fuel consumption rates of the Nexus prototype ranged from 1.6 L/100 km at 61 km/hr up to 2.8 L/100 km at 121 km/hr. Fuel consumption rates for the Society of Automotive Engineers (SAE) driving cycle tests were 4.5 L/100 km for the SAE Urban cycle and 2.0 L/100 km for the SAE Interstate 55 cycle. The efficiency of the power train was determined using a laboratory dynamometer, enabling the road test results to be compared to the results from an energy and performance simulation program. Predicted fuel economy was in good agreement with that determined experimentally. Widespread use of single passenger commuter vehicles would substantially reduce current transportation energy consumption.
Technical Paper

A Full Scale Class 8 Conventional Tractor-Trailer in the 9×9m Wind Tunnel

1988-10-01
881876
This paper outlines the techniques used to install both a full scale and a half scale tractor-trailer model in the 9×9 meter National Research Council of Canada wind tunnel in Ottawa, Canada. The objectives were to measure the cooling drag of an active cooling system and to investigate the aerodynamic testing limits of long, yawed models inside a solid wall wind tunnel. The tunnel interference problem is discussed as it pertains to the upstream boundary, test section floor, downstream boundary, ceiling and side walls and tractor-trailer surface pressure measurements. A potential solution to the problem, however, is the subject of a follow-up paper.
X