Refine Your Search

Topic

Author

Affiliation

Search Results

Article

2018-12-07
Just down the road from SAE International’s headquarters in Warrendale, Pennsylvania, Mark Sokalski has been quietly working out how to maximize piston-driven engine efficiency – with an internal combustion engine mechanism that doesn’t follow the norm.
Event

2019-12-15
Innovative and enquiring specialists gather together 2020 SAE International Heavy-Duty Diesel Emissions Control Symposium (HDD) expand their knowledge collaborate most promising new technologies: emission control strategies, in-service maintenance, retro-fitting exhaust after-treatment equipment, global harmonization emission standards, regulatory activities
Event

2019-12-15
Innovative and enquiring specialists gather together 2020 SAE International Heavy-Duty Diesel Emissions Control Symposium (HDD) expand their knowledge collaborate most promising new technologies: emission control strategies, in-service maintenance, retro-fitting exhaust after-treatment equipment, global harmonization emission standards, regulatory activities
Event

2019-12-15
Innovative and enquiring specialists gather together 2020 SAE International Heavy-Duty Diesel Emissions Control Symposium (HDD) expand their knowledge collaborate most promising new technologies: emission control strategies, in-service maintenance, retro-fitting exhaust after-treatment equipment, global harmonization emission standards, regulatory activities
Event

2019-12-15
Innovative and enquiring specialists gather together 2020 SAE International Heavy-Duty Diesel Emissions Control Symposium (HDD) expand their knowledge collaborate most promising new technologies: emission control strategies, in-service maintenance, retro-fitting exhaust after-treatment equipment, global harmonization emission standards, regulatory activities
Event

2019-12-15
Innovative and enquiring specialists gather together 2020 SAE International Heavy-Duty Diesel Emissions Control Symposium (HDD) expand their knowledge collaborate most promising new technologies: emission control strategies, in-service maintenance, retro-fitting exhaust after-treatment equipment, global harmonization emission standards, regulatory activities

2018-02-15
The U.S. Army and GM collaborate on fuel-cell-generated electricity to power the vehicle’s propulsion system and the onboard electronics, while providing off-vehicle power via an Exportable Power Take-Off unit.
Technical Paper

A Comparative Analysis of WHR System in HD Engines Using Conventional Diesel Combustion and Partially-Premixed Combustion

2012-09-24
2012-01-1930
In the truck industry there is a continuous demand to increase the efficiency and to decrease the emissions. To acknowledge both these issues a waste heat recovery system (WHR) is combined with a partially premixed combustion (PPC) engine to deliver an efficient engine system. Over the past decades numerous attempts to increase the thermal efficiency of the diesel engine has been made. One such attempt is the PPC concept that has demonstrated potential for substantially increased thermal efficiency combined with much reduced emission levels. So far most work on increasing engine efficiency has been focused on improving the thermal efficiency of the engine while WHR, which has an excellent potential for another 1-5 % fuel consumption reduction, has not been researched that much yet. In this paper a WHR system using a Rankine cycle has been developed in a modeling environment using IPSEpro.
Technical Paper

A Correlation Study Between Two Heavy-Duty Vehicle Chassis Dynamometer Emissions Testing Facilities

1993-08-01
931788
A correlation study of vehicle exhaust emissions measurements was conducted by the West Virginia University (WVU) Transportable Heavy-Duty Vehicle Emissions Testing Laboratory and the Los Angeles County Metropolitan Transportation Authority (MTA) Emissions Testing Facility. A diesel fueled transit bus was tested by both chassis dynamometer emissions testing laboratories. Exhaust emissions were sampled from the tested vehicle during the operation of the Federal Transit Administration (FTA) Central Business District (CBD) testing cycle. Data of gaseous and particulate matter emissions was obtained at each testing laboratory. The emissions results were compared to evaluate the effects of different equipment, test procedures, and drivers on the measurements of exhaust emissions of heavy-duty vehicles operated on a chassis dynamometer.
Technical Paper

A Diesel Oxidation Catalyst for Exhaust Emissions Reduction

1993-11-01
932958
The authors used a mass spectrometer to determine an SOF reduction mechanism of a diesel oxidation catalyst. The results indicate that SOF reduction lies in the catalytic conversion of high molecular organic matter to low molecular organic matter. And unregulated emissions are also reduced through this conversion. It is also found that the SOF reduction performance is highly dependent up on the condition of the wash coat. There is some limitation to improving diesel oxidation catalyst performance because of the sulfur content found in diesel fuel. Finally, the authors have determined what we think are the specifications of the presently best catalytic converter.
Technical Paper

A Dual - Reductant HC LNC Approach to Commercial Vehicle Tier 4 Final Solutions

2011-09-13
2011-01-2203
Stringent global emissions legislations demand effective NOx reduction strategies for both the engine as well as the aftertreatment. Diesel applications have previously applied Lean NOx Catalysts (LNCs) [1, 2], but their reduction efficiency and longevity have been far less than that of the competing ammonia-based SCR systems, such as urea [3]. A catalyst has been developed to significantly reduce NOx emissions, approaching 60% with ULSD and exceeding 95% with E85. Both thermal and sulfur aging are applied, as well as on-engine aging, illustrating resilient performance to accommodate necessary life requirements. A robust system is developed to introduce both ULSD from the vehicle's tank as well as E85 (up to 85% ethanol with the balance being gasoline) from a moderately sized supplemental tank, enabling extended mileage service intervals to replenish the reductant, as compared with urea, particularly when coupled with an engine-out based NOx reduction technology, such as EGR.
Technical Paper

A Fast Start-Up On-Board Diesel Fuel Reformer for NOx Trap Regeneration and Desulfation

2004-10-26
2004-01-2684
This paper describes recent progress in our program to develop an emissions technology allowing diesel engines to meet the upcoming 2007/2010 regulations for NOx. At the heart of this technology is the ArvinMeritor Diesel Fuel Reformer that reforms the fuel, on-demand, on-board a vehicle. The fuel reformer uses plasma to partially oxidize a mixture of diesel fuel and air creating a highly reducing mixture of Hydrogen and Carbon monoxide. In a previous publication, we have demonstrated that using a reformate rich in H2 and CO to regenerate a NOx trap is highly advantageous compared to vaporized diesel fuel used conventionally. In this paper we present results and a strategy for performing desulfation of the traps using the fuel reformer. In contrast to vaporized diesel, which requires very high temperatures that fall outside the normal exhaust operating temperatures for diesel engines, desulfation was achieved at temperatures lower by more than 100 °C using the Plasma Fuel Reformer.
Journal Article

A High Efficiency, Dilute Gasoline Engine for the Heavy-Duty Market

2012-09-24
2012-01-1979
A 13 L HD diesel engine was converted to run as a flame propagation engine using the HEDGE™ Dual-Fuel concept. This concept consists of pre-mixed gasoline ignited by a small amount of diesel fuel - i.e., a diesel micropilot. Due to the large bore size and relatively high compression ratio for a pre-mixed combustion engine, high levels of cooled EGR were used to suppress knock and reduce the engine-out emissions of the oxides of nitrogen and particulates. Previous work had indicated that the boosting of high dilution engines challenges most modern turbocharging systems, so phase I of the project consisted of extensive simulation efforts to identify an EGR configuration that would allow for high levels of EGR flow along the lug curve while minimizing pumping losses and combustion instabilities from excessive backpressure. A potential solution that provided adequate BTE potential was consisted of dual loop EGR systems to simultaneously flow high pressure and low pressure loop EGR.
Technical Paper

A Methodology for the Derivation of Movement-and Load Spectra for Energy-Efficiency Test Cycles of Heavy Equipment Vehicles

2014-09-30
2014-01-2357
As a result of the Kyoto Protocol [1], the European Union's legislation demands higher saving rates for the total energy consumption of technical equipment. Heavy Equipment, such as construction- and agricultural machines, contributes over 80% of the total off-road diesel fuel consumption in Germany per annum. It is therefore necessary to provide helpful solutions in order to reach this ambitious aim. The German Federal Ministry of Education and Research cooperates with machine manufacturers, component suppliers and research institutes in the area of heavy equipment. Under the project name TEAM [2] a three year project has been started, which is focused on the development and integration of new propulsion and steering systems for heavy equipment. One task within the project is finding an appropriate way of evaluating the energy efficiency of the enhanced machines, after the powertrain modifications have been applied to it.
Technical Paper

A Multi-Vane Expander, by Adding Power, Can Improve The Fuel Economy Of Long-Haul Diesel Trucks

1978-02-01
780689
An organic Rankine Bottoming cycle added to Diesel engines used for long-haul trucks has the potential of improving their peak fuel economy by up to 15% over a typical duty cycle. General Electric has developed a multi-vane rotary expander which has a measured isentropic brake efficiency of 80+% over a wide range of speed and power levels with organic working fluids. High cycle efficiency for design and off-design conditions is achieved with the multi-vane expander. The potential advantages of the multi-vane expander for the Diesel engine bottoming cycle include the elimination of a high speed gear box and the potential for over 80% isentropic engine efficiency. The multi-vane expander is a ruggedly built component running at Diesel engine speed. This paper describes the design and evaluation of a nominal 40 HP multi-vane expander for this application.
Technical Paper

A New Validation of Spray Penetration Models for Modern Heavy Duty Diesel Fuel Injectors

2017-03-28
2017-01-0826
The performance of five positive k-factor injector tips has been assessed in this work by analyzing a comprehensive set of injected mass, momentum, and spray measurements. Using high speed shadowgraphs of the injected diesel plumes, the sensitivities of measured vapor penetration and dispersion to injection pressure (100-250MPa) and ambient density (20-52 kg/m3) have been compared with the Naber-Siebers empirical spray model to gain understanding of second order effects of orifice diameter. Varying in size from 137 to 353μm, the orifice diameters and corresponding injector tips are appropriate for a relatively wide range of engine cylinder sizes (from 0.5 to 5L). In this regime, decreasing the orifice exit diameter was found to reduce spray penetration sensitivity to differential injection pressure. The cone angle and k-factored orifice exit diameter were found to be uncorrelated.
Technical Paper

A Novel Approach on Range Prediction of a Hydrogen Fuel Cell Electric Truck

2019-11-21
2019-28-2514
Today’s growing commercial vehicle population creates a demand for fossil fuel surplus requirement and develops highly polluted urban cities in the world. Hence addressing both factors is very much essential. Battery electric vehicles are with limited vehicle range and higher charging time. So it is not suitable for the long-haul application. In further the hydrogen fuel cell-based electric vehicles are the future of the commercial electric vehicle to achieve long-range, zero-emission and alternate for reducing fossil fuels requirement. The hydrogen fuel cell electric vehicle range, it means the total distance covered by the vehicle in a single filling of hydrogen into the onboard cylinders. And here the prediction of the vehicle range is essential based on optimal parameters; vehicle acceleration, speed, trip time etc. before the start of the trip.
Technical Paper

A Performance Study of Iso-Butanol-, Methanol-, and Ethanol-Gasoline Blends Using a Single Cylinder Engine

1993-11-01
932953
The objective of this study was to evaluate iso-butanol (C4H9OH) as an alternative fuel for spark ignition engines. Unlike methanol (CH3OH) and ethanol (C2H5OH), iso-butanol has not been extensively studied in the past as either a fuel blend candidate with gasoline or straight fuel. The performance of a single cylinder engine (ASTM=CFR) was studied using alcohol-gasoline blends under different input parameters. The engine operating conditions were: three carburetor settings (three different fuel flow rates), spark timings of 5°, 10°, 15°, 20°, and 25° BTDC, and a range of compression ratios from a minimum of 7.5 to a maximum of 15 in steps of one depending on knock. The fuels tested were alcohol-gasoline blends having 5%, 10%, 15%, and 20% of iso-butanol, ethanol, and methanol. And also as a baseline fuel, pure gasoline (93 ON) was used. The engine was run at a constant speed of 800 RPM.
Technical Paper

A STUDY OF DIFFERENT EGR ROUTES ON A HEAVY DUTY STOICHIOMETRIC NATURAL GAS ENGINE

2009-09-13
2009-24-0096
Exhaust gas recirculation (EGR) is a suitable strategy to optimize heavy duty natural gas (NG) engines. EGR could be utilized to have high specific power, with low thermal stress, but also to increase engine efficiency. NG fuelling permits a large flexibility in EGR system design, due to very clean engine exhaust. In this paper, three types of EGR routes have been studied. The best set up, which can introduce the highest EGR quantities, to provide the best reduction of the thermal load at rated power, was found to be a cooled low pressure EGR route. However high low pressure route (HLPR) could give the possibility to increase engine efficiency by modulating the power output in the widest un-throttled range operation.
Technical Paper

A Simulation Based Comprehensive Performance Evaluation of Cat® C4.4 Current Production Engine with its Split Cycle Clean Combustion Variant using a Validated One-Dimensional Modeling Methodology

2013-09-24
2013-01-2434
This paper uses a one-dimensional (1-D) simulation based approach to compare the steady state and transient performance of a Split Cycle Clean Combustion (SCCC) diesel engine to a similarly sized conventional diesel engine. Caterpillar Inc's one-dimensional modeling tool “Dynasty” is used to convert the simulation model of Caterpillar's current production turbocharged diesel engine Cat® C4.4 (used in their Hydraulic Excavator 316) to operate on the SCCC cycle. Steady state and transient engine performance is compared between the two engine variants. This study is focused only on the performance aspects of engine and relies on the other independently published papers for emissions prediction. This paper also demonstrates the use of Caterpillar's proprietary modeling software Dynasty to replicate the two cylinder SCCC engine model presented by University of Pisa in their paper [2].
X