Refine Your Search




Search Results


15 Pole Connector Between Towing Vehicles and Trailers with 12 Volt Nominal Supply

This SAE standard establishes the minimum construction and performance requirements for a 15 Pole Connector Between Towing Vehicles and Trailers, for trucks, trailers, and dollies in conjunction with SAE J2742. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.

15 Pole Connector Between Towing Vehicles and Trailers with 12 Volt Nominal Supply

This SAE standard establishes the minimum construction and performance requirements for a 15 Pole Connector Between Towing Vehicles and Trailers, for trucks, trailers, and dollies in conjunction with SAE J2742. The connector accommodates both power and ISO 11992-1 signal circuits along with dual ground wires to accommodate grounding requirements within the constraints of the SAE J2691 terminal capacity.
Technical Paper

1983 Ford Ranger Truck HSLA Steel Wheel

The demand for improved fuel economy in both cars and trucks has emphasized the need for lighter weight components. The application of high strength steel to wheels, both rim and disc, represents a significant opportunity for the automotive industry. This paper discusses the Ranger HSLA wheel program that achieved a 9.7 lbs. per vehicle weight savings relative to a plain carbon steel wheel of the same design. It describes the Ranger wheel specifications, the material selection, the metallurgical considerations of applying HSLA to wheels, and HSLA arc and flash butt welding. The Ranger wheel design and the development of the manufacturing process is discussed, including design modifications to accommodate the lighter gage. The results demonstrate that wheels can be successfully manufactured from low sulfur 60XK HSLA steel in a conventional high volume process (stamped disc and rolled rim) to meet all wheel performance requirements and achieve a significant weight reduction.
Technical Paper

25W HID Headlamp - First Series Production in Hybrid Vehicle

Due to the general requirements in the automotive industry to reduce the power consumption, fuel consumption rate and CO2 emission a new HID (High Intensity Discharge) bulb with only 25W is under development for front lighting systems. A first headlamp integrated in a hybrid vehicle is now launched as a first application in the market. The current regulation in ECE allows to get rid of the mandatory headlamp cleaning system and the automatic leveling requirement once the 25W HID bulb is applied. The reason for this is the objective luminous flux of the 25W HID bulb, which emits less than 2000 lm, a boundary defined in the regulation, where a headlamp cleaning and an automatic leveling is requested. That simplifies especially the integration in smaller vehicles and electric and hybrid vehicles. The paper describes the special design of the headlamp, the projector unit, the light performance, packaging advantages and future outlook of further applications in the near future.
Technical Paper

5480 Reach Truck-A New Concept in Reach Track Design

The new 5480 Reach Truck, designed at Dynamic Industries, introduces a movable frame between the main frame and the telescopic boom. The use of this movable frame allows the usually fixed boom pivot to be elevated for greater lifting heights with smaller boom sections. By combining the motions of the boom and the movable frame, horizontal motion at the boom tip is possible without moving the truck. With the movable frame, the total machine height and length can be reduced for a given lifting goal. Another advantage of the movable frame is the ability to reach further below grade than is now possible in the industry. The 5480 Reach Truck has a maximum lift of 54 feet (16.5 meters) and can reach 24 feet (7.3 meters) below-grade.
Technical Paper

A Bench Test for the Evaluation of Silver-Steel Lubrication Properties of Railroad Diesel Oils

A pin and disc machine has been modified for the evaluation of silver-steel lubrication characteristics of railroad diesel oils. Use of silver pins on polished steel discs at selected loads and rubbing speeds allows good correlation with known engine behavior. In comparison with wear and friction data obtained by the four ball method, this pin and disc test gives better correlation with engine tests than the Modified Four Ball Test.
Technical Paper

A Bus for Denver’s Mall

A unique shuttle bus is being constructed by Minicars, Inc., and Walter Vetter Karosserie-werk for Denver’s Transitway/Mall. The bus is designed for frequent stop, low speed service in a downtown pedestrian environment. It features a very low floor and multiple wide doors for rapid passenger boarding and deboarding. Two versions will be supplied for comparative evalation, a low noise diesel configuration and a battery-electric configuration. Either version can subsequently be converted to the alternative propulsion system.
Technical Paper

A Comparison of the Fatigue Lives of Polyvinylchloride & Steel Welds

This paper describes the results of a series of fatigue studies relating the lives of several weld geometries. Rotating beam and axially loaded specimens were used. A comparison between steel and plastic (polyvinylchloride scale models is made. Using plastic scale models of welded structures for fatigue life determination is the ultimate goal of this work.
Technical Paper

A Composite Approach to Reducing Abrasive Wear

“Today, wearing parts are regularly subjected to abnormal loading conditions. They must be able to accept these conditions without failure. In continuous operations, unscheduled downtime greatly increases maintenance costs, not to mention the cost of lost production. White iron castings offer premium abrasion resistance for many of these applications, but are often not used due to the possibility of brittle failure and the difficulty of mechanical attachment. This paper discusses the properties and applications of a composite of martensitic white iron and mild steel. This laminate will accept medium to high impact without loss of service failure, and can be installed by mechanical means or with welded attachment.”
Technical Paper

A Computer Program for Truck Frame Design

The classical methods of deflection analysis are finding more application to complex automotive chassis frame structures. Much too time consuming for manual application, they are now coming into more widespread use with the aid of high-speed computers. This paper describes a computerized deflection analysis for complete truck frames under the cases of torsion and flexure. The rapid, accurate analysis permits investigation of more design problems resulting in the eventual production of more efficient frame structures.
Technical Paper

A Control Method For 4WS Truck To Suppress Excursion of a Body Rear Overhang

A rear-steering control method for a four-wheel steering truck has been developed. The purpose of this investigation is to develop a control method to minimize the turning radius without the excursion of the vehicle rear end toward the outside of the turn. The basic control concept is to steer the rear wheels so that the vehicle rear end follows the path of the front end. The control method was applied to an experimental medium-duty truck with four-wheel steering system. The simulation and vehicle test results showed the control method to be effective in minimizing the turning radius without causing the excursion of the vehicle rear end toward the outside in short turns.
Technical Paper

A Cost Effective, New Coating for Multi Layer Steel Exhaust Gaskets

Current trends in environmental and emissions regulations are driving changes in new engine systems, and increasing the need for more effectively sealed joints in exhaust systems. At the high temperatures in these exhaust systems it is difficult for traditional gaskets to provide an effective seal, as they degrade at high operating temperatures. This paper introduces a coating that has both excellent temperature stability and good compliance, thus forming an excellent sealing enhancement for metallic layers in exhaust system gaskets. Temperature stability data is presented along with sealing data, which illustrate the superior performance of this material compared to current systems.
Technical Paper

A Design Tool for Tuning and Optimizing Carburizing and Heat Treat Processes

A software tool has been developed to aid designers and process engineers in the development and improvement of heat treat processes. This tool, DANTE™, combines metallurgical phase transformation models with mass diffusion, thermal and mechanical models to simulate the heating, carburization, quenching and tempering of steel parts. The technology behind the DANTE software and some applications are presented in this paper.
Technical Paper

A Detailed Analysis of Proper Safety Features Implementation in the Design and Construction of Modern Automotive LPG and CNG Containers

Paper describes analysis of the design process of modern automotive LPG and CNG containers. Over decade experience in the field of both computer based analysis as well as in the real conditions testing has been collected and presented in the paper. Authors present the potentials of modern FEM methodologies in the optimization and production of lightweight steel containers. It has been proved that the most sophisticated numerical analysis have to be followed by the construction verification, particularly considering direct exposure to fire. Bonfire test have become obligatory for both liquid and compressed gases containers. Properly chosen fire protection system, together with the adequate level of quality of materials applied for its production together with proper directing of the gas flowing out from safety devices are the essential factors defining gas containers fire safety.
Technical Paper

A Direct Method for Designing Fuel Filler Door with Torsional Spring

A direct method is developed for designing a vehicle fuel filler door with torsional spring. The design parameters include the door's geometrical parameters and spring dimensions. The design requirements are based on the finger force curve during closing and opening, and the bending stress in the spring. An example is included to demonstrate the effectiveness of the new method.
Technical Paper

A Fast-to-Market Process for a Full-Size, Four-Door, Sport Utility Vehicle

In the near future, GM will introduce a new product to the marketplace. The vehicle is a full-size, four-door utility vehicle based on its current C/K full-size truck product line. This new vehicle is smaller than the current Suburban and does not provide room for a third seat. It is expected that this utility will supplement the small truck four-door utility and create a new market niche with its unique size and features. The process used to design, develop and validate the new product in an aggressive 93-week time frame, is the subject of this paper.
Technical Paper

A Field Evaluation of the S-1 Pedestrian Guard: Transit and Shuttle Bus Applications

The need to reduce the injury to pedestrians that are run over or pinned beneath a bus is an ongoing concern for transit authorities and other operators. Occasionally, a pedestrian will be run over by the right rear wheel while exiting the rear door. This accident occurs in various scenarios such as when people exit the bus and become entangled in the door grab bars, or when they fall between the curb and the bus while it approaches or departs. With all scenarios, the S-1 Gard acts similar to a cow catcher, pushing the fallen pedestrian out and away from the rear tire. This paper will: outline various incident scenarios, evaluate the S-1 Gard's performance in a city environment, review installation of the guard as well as its maintenance requirements. The purpose of this paper is to bring to the attention of transit authorities and shuttle operators the overall value of this device.
Technical Paper

A Field Performance Prediction Technique for Light Truck Structural Components

A method has been developed which allows prediction of the field performance of structural components based on prototype vehicle test procedures and results. Component designs can then be optimized by selecting prototype durability test objectives which more accurately reflect actual field usage. This procedure, which is based on fatigue damage calculations from component strain histories, has been successfully applied to non-safety related body, frame and suspension structural components of light trucks and vans.
Technical Paper

A Filament Winding Concept to Improve the Strength and Stiffness Characteristics of Thermoplastic Large Injection Molded Composite Automotive Body Panels

The automobile industry is seeing an increased need for the application of plastics and their derivatives in various forms such as fiber reinforced plastics, in the design and manufacture of various automotive structural components, to reduce weight, cost and improve fuel efficiency. A lot of effort is being directed at the development of structural plastics, to meet specific automotive requirements such as stiffness, safety, strength, durability and environmental standards and recyclability. This paper presents the concept of reinforcing large injection molded fiber reinforced body panels with structural uni-directional fibers (carbon, graphite, kevlar or fiber glass) wound in tension around the body panels by filament winding technique. Structural uni-directional fibers in tension wound around the fiber reinforced plastic inner body panels would place these body panels under compression.
Technical Paper

A General Formulation for Topology Optimization

Topology optimization is used for obtaining the best layout of vehicle structural components to achieve predetermined performance goals. Unlike the most common approach which uses the optimality criteria methods, the topology design problem is formulated as a general optimization problem and is solved by the mathematical programming method. One of the major advantages of this approach is its generality; thus it can solve various problems, e.g. multi-objective and multi-constraint problems. The MSC/NASTRAN finite element code is employed for response analyses. Two automotive examples including a simplified truck frame and a truck frame crossmember are presented.