Refine Your Search




Search Results

Technical Paper

1983 Ford Ranger Truck HSLA Steel Wheel

The demand for improved fuel economy in both cars and trucks has emphasized the need for lighter weight components. The application of high strength steel to wheels, both rim and disc, represents a significant opportunity for the automotive industry. This paper discusses the Ranger HSLA wheel program that achieved a 9.7 lbs. per vehicle weight savings relative to a plain carbon steel wheel of the same design. It describes the Ranger wheel specifications, the material selection, the metallurgical considerations of applying HSLA to wheels, and HSLA arc and flash butt welding. The Ranger wheel design and the development of the manufacturing process is discussed, including design modifications to accommodate the lighter gage. The results demonstrate that wheels can be successfully manufactured from low sulfur 60XK HSLA steel in a conventional high volume process (stamped disc and rolled rim) to meet all wheel performance requirements and achieve a significant weight reduction.
Technical Paper

2-Stroke Engine Options for Automotive Use: A Fundamental Comparison of Different Potential Scavenging Arrangements for Medium-Duty Truck Applications

The work presented here seeks to compare different means of providing scavenging systems for an automotive 2-stroke engine. It follows on from previous work solely investigating uniflow scavenging systems, and aims to provide context for the results discovered there as well as to assess the benefits of a new scavenging system: the reverse-uniflow sleeve-valve. For the study the general performance of the engine was taken to be suitable to power a medium-duty truck, and all of the concepts discussed here were compared in terms of indicated fuel consumption for the same cylinder swept volume using a one-dimensional engine simulation package. In order to investigate the sleeve-valve designs layout drawings and analysis of the Rolls-Royce Crecy-type sleeve had to be undertaken.
Technical Paper

A Bench Test for the Evaluation of Silver-Steel Lubrication Properties of Railroad Diesel Oils

A pin and disc machine has been modified for the evaluation of silver-steel lubrication characteristics of railroad diesel oils. Use of silver pins on polished steel discs at selected loads and rubbing speeds allows good correlation with known engine behavior. In comparison with wear and friction data obtained by the four ball method, this pin and disc test gives better correlation with engine tests than the Modified Four Ball Test.
Technical Paper

A Comparison of the Fatigue Lives of Polyvinylchloride & Steel Welds

This paper describes the results of a series of fatigue studies relating the lives of several weld geometries. Rotating beam and axially loaded specimens were used. A comparison between steel and plastic (polyvinylchloride scale models is made. Using plastic scale models of welded structures for fatigue life determination is the ultimate goal of this work.
Technical Paper

A Composite Approach to Reducing Abrasive Wear

“Today, wearing parts are regularly subjected to abnormal loading conditions. They must be able to accept these conditions without failure. In continuous operations, unscheduled downtime greatly increases maintenance costs, not to mention the cost of lost production. White iron castings offer premium abrasion resistance for many of these applications, but are often not used due to the possibility of brittle failure and the difficulty of mechanical attachment. This paper discusses the properties and applications of a composite of martensitic white iron and mild steel. This laminate will accept medium to high impact without loss of service failure, and can be installed by mechanical means or with welded attachment.”
Technical Paper

A Comprehensive Study on Euro 6 Turbocharger Selections and Its Deterioration with Closed Crank-Case Ventilation in Heavy Commercial Vehicles

Euro 6 emission norms are getting implemented in India from April 2020 and it is being viewed as one of the greatest challenges ever faced by the Indian automotive industry. In order to achieve such stringent emission norms a good strategy will be to optimize the engine out emission through in cylinder emission control techniques and a right sized after treatment system has to be used for this optimized engine. There exist several factors and trade-off between these should be established for in cylinder optimization of emissions. Since the turbocharger plays an apex role in controlling both the performance and engine out emissions of a CI engine, turbocharger selection is a crucial step in the development of new generation of Euro 6 engines in India. Such engines are equipped with additional actuators such as Intake Throttle Valve and Exhaust Throttle Valve and combination of these flap operations with turbocharger output plays a prominent role in controlling performance and emission.
Technical Paper

A Computational Investigation into the Effects of Included Spray Angle on Heavy-Duty Diesel Engine Operating Parameters

Effects of included spray angle with different injection strategies on combustion characteristics, performance and amount of pollutant emission have been computationally investigated in a common rail heavy-duty DI diesel engine. The CFD model was firstly validated with experimental data achieved from a Caterpillar 3401 diesel engine for a conventional part load condition at 1600 rev/min. Three different included spray angles (α = 145°, 105°, 90°) were studied in comparison with the traditional spray injection angle (α = 125°). The results show that spray targeting is very effective for controlling the in-cylinder mixture distributions especially when it accompanied with various injection strategies. It was found that 105° spray cone angle along with an optimized split pre- and post-Top Dead Center (TDC) injection strategy could significantly reduce NOx and soot emissions without much penalty of the fuel consumption, as compared to the wide spray angle.
Technical Paper

A Computer Simulation of Backhoe Type Excavators

This paper describes the simulation model of a backhoe excavator. The model uses a prescribed motion cycle and the objective of the program is to determine the power requirements for each of the cylinders as well as the total engine power requirement. Most computer simulations are developed by expressing the differential equations of motion for the system being studied. The known force inputs to the system are applied and the time response of the system is then obtained by numerically integrating the governing differential equations. This paper on the other hand develops the reverse of this. Utilizing a prescribed geometry and trajectory cycle for a linkage system as the input, the program solves for the types of force inputs that are required to achieve that trajectory. With the time dependence of the trajectory known, the total power required and the power required of each cylinder is also evaluated. A typical excavator linkage is shown in Fig. 1.
Technical Paper

A Cost Effective, New Coating for Multi Layer Steel Exhaust Gaskets

Current trends in environmental and emissions regulations are driving changes in new engine systems, and increasing the need for more effectively sealed joints in exhaust systems. At the high temperatures in these exhaust systems it is difficult for traditional gaskets to provide an effective seal, as they degrade at high operating temperatures. This paper introduces a coating that has both excellent temperature stability and good compliance, thus forming an excellent sealing enhancement for metallic layers in exhaust system gaskets. Temperature stability data is presented along with sealing data, which illustrate the superior performance of this material compared to current systems.
Technical Paper

A Design Tool for Tuning and Optimizing Carburizing and Heat Treat Processes

A software tool has been developed to aid designers and process engineers in the development and improvement of heat treat processes. This tool, DANTE™, combines metallurgical phase transformation models with mass diffusion, thermal and mechanical models to simulate the heating, carburization, quenching and tempering of steel parts. The technology behind the DANTE software and some applications are presented in this paper.
Technical Paper

A Detailed Analysis of Proper Safety Features Implementation in the Design and Construction of Modern Automotive LPG and CNG Containers

Paper describes analysis of the design process of modern automotive LPG and CNG containers. Over decade experience in the field of both computer based analysis as well as in the real conditions testing has been collected and presented in the paper. Authors present the potentials of modern FEM methodologies in the optimization and production of lightweight steel containers. It has been proved that the most sophisticated numerical analysis have to be followed by the construction verification, particularly considering direct exposure to fire. Bonfire test have become obligatory for both liquid and compressed gases containers. Properly chosen fire protection system, together with the adequate level of quality of materials applied for its production together with proper directing of the gas flowing out from safety devices are the essential factors defining gas containers fire safety.
Technical Paper

A Hybrid Combustion Control Strategy for Heavy Duty Diesel Engines Based on the Technologies of Multi-Pulse Injections, Variable Boost Pressure and Retarded Intake Valve Closing Timing

Combustion control strategy for high efficiency and low emissions in a heavy duty (H D) diesel engine was investigated experimentally in a single cylinder test engine with a common rail fuel system, EGR (Exhaust Gas Recirculation) system, boost system and retarded intake valve closing timing actuator. For the operation loads of IMEPg (Gross Indicated Mean Effective Pressure) less than 1.1 MPa the low temperature combustion (LTC) with high rate of EGR was applied. The fuel injection modes of either single injection or multi-pulse injections, boost pressure and retarded intake valve closing timing (RIVCT) were also coupled with the engine operation condition loads for high efficiency and low emissions. A higher boost pressure played an important role in improving fuel efficiency and obtaining ultra-low soot and NOx emissions.
Technical Paper


This paper presents some of the history of the Spacemetal process development; a discussion of the core forming machine, a description of the welder where corrugated core and facing sheets are joined; the quality control process employed for inspecting the finished product; and some of the material properties and applications. FOREWORD Development of a production process and the machines for fabrication of a resistance welded steel sandwich was made by Missile Division, North American Aviation, Inc. Development was carried forward under contract AF 33(600)-26154 from the Manufacturing Methods Branch, Industrial Resources Division of the Air Materiel Command USAF.
Technical Paper

A Method for Bearing Damage Analysis

A method for the analysis of a damaged bearing is described. An emphasis is placed on obtaining complete and accurate application information; conducting a thorough visual examination; making physical measurements as necessary; and conducting metallurgical tests. The method has been used for tapered roller bearings as well as a variety of other components of various steel types and processing histories.
Journal Article

A Method for Turbocharging Single-Cylinder, Four-Stroke Engines

Abstract Turbocharging can provide a low cost means for increasing the power output and fuel economy of an internal combustion engine. Currently, turbocharging is common in multi-cylinder engines, but due to the inconsistent nature of intake air flow, it is not commonly used in single-cylinder engines. In this article, we propose a novel method for turbocharging single-cylinder, four-stroke engines. Our method adds an air capacitor-an additional volume in series with the intake manifold, between the turbocharger compressor and the engine intake-to buffer the output from the turbocharger compressor and deliver pressurized air during the intake stroke. We analyzed the theoretical feasibility of air capacitor-based turbocharging for a single-cylinder engine, focusing on fill time, optimal volume, density gain, and thermal effects due to adiabatic compression of the intake air.
Technical Paper

A Microprocessor-Based Combine Harvester Control System

Harvesting is one of the most critical operations in grain production. Any means to increase the productivity and efficiency of the agricultural combine harvester has immediate benefits for the producer. This paper reports on an investigation of a control system to automatically and continuously adjust three main parameters, namely, feedrate, sieve airflow and cylinder speed. Results of field testing are presented.
Journal Article

A Multiscale Cylinder Bore Honing Pattern Lubrication Model for Improved Engine Friction

Abstract Three-dimensional patterns representing crosshatched plateau-honed cylinder bores based on two-dimensional Fast Fourier Transform (FFT) of measured surfaces were generated and used to calculate pressure flow, shear-driven flow, and shear stress factors. Later, the flow and shear stress factors obtained by numerical simulations for various surface patterns were used to calculate lubricant film thickness and friction force between piston ring and cylinder bore contact in typical diesel engine conditions using a mixed lubrication model. The effects of various crosshatch honing angles, such as 30°, 45°, and 60°, and texture heights on engine friction losses, wear, and oil consumption were discussed in detail. It is observed from numerical results that lower lubricant film thickness values are generated with higher honing angles, particularly in mixed lubrication regime where lubricant film thickness is close to the roughness level, mainly due to lower resistance to pressure flow.
Technical Paper

A New Approach to Titanium for Truck Suspension Springs

The titanium alloy system offers a range of properties conducive to weight/space savings. These properties include high strength, low elastic modulus and low density, which uniquely suit them for spring applications. By utilizing titanium in various spring designs, suspension engineers can save up to 60% of the weight and 20-30% of the space for a comparable steel spring. The primary impediment to widespread titanium part production and use in the past was cost. A new low cost titanium alloy system designed specifically for suspension and drive train application has been tested and proved to limit this cost problem. Working with titanium in their suspension designs, engineers will save significant weight/space over comparable steel and aluminum components.
Technical Paper

A New Concept in Commercial Vehicle Suspension

Developed to cut down on maintenance costs and increase the earning power of the vehicle, this family of suspensions provides for improved vehicular behavior - items such as stability, braking, cornering, and overall ride. The suspensions utilize a principle of providing a cushioned variable rate ride through the use of molded rubber springs. Floating walking beams distribute weight equally on both axles in the case of tandems. The axles are positively located by upper wishbones and lower torque rods. The parallelogram thus formed prevents windup and axle hop. The correct use of metals shows a substantial weight saving in the entire model range.
Technical Paper

A New Generation of Vibration Isolation for the Conventional Truck Cab

A new concept in conventional truck cab vibration isolation has been developed by Holland Neway International. The system provides a significant improvement in ride comfort for the truck cab occupants in the truck of the twenty-first century. The single point isolator incorporates inclined sleeve type air springs to achieve a very low natural frequency, typically 0.9 - 1.1 hertz. A unique variable geometry damping system is used in conjunction with the sleeve springs to allow the configuration to achieve significant improvements in vibration isolation. The passive variable geometry control operates essentially undamped until large displacement disturbances are encountered allowing maximum possible isolation performance. Since the isolator natural frequency occurs in a region where the human physiology is most tolerant of vibratory motion, a high level of ride comfort is achieved.